10,805 research outputs found

    Searching for Evidence of Life in Deep Time and Space

    Get PDF
    Cyanobacterial mats provide insights into ancient benthic microbial communities and their biosignatures. Thick mats occupy hypersaline saltern ponds at Guerrero Negro, Baja California, Mexico. Mat biota maintains rapid rates of biogeochemical processes under steep and rapidly changing environmental gradients. Cycling of C, O, and S all increased identically with temperature, indicating the tight coupling of these cycles. An enormous microbial diversity exhibits a highly structured spatial distribution of populations. Combined universal clone libraries from all mat layers indicated Bacteria/Archaea/Eukarya ratios of 57:7:1. More than 10,000 unique bacterial sequences were present. The relative abundance of Archaea increased with depth - below 10 cm, solvent-extractable archaeal lipids were twice as abundant as bacterial lipids. Only 15 species of Eukarya were found among 890 clones analyzed. Degradation of the mats insoluble macromolecular organic fraction (IMOM) by hydropyrolysis released a complex variety of linear, branched and polycyclic alkane structures, e.g., hopanes, methylhopanes and steranes. Covalent binding of these biosignatures into IMOM aids their long-term geological preservation. Mars rover missions revealed evidence of long-lived fluvial lacustrine systems and organics in associated mudstones. NASAs Mars 2020 rover mission will examine sediments in Jezero crater, including a delta and shoreline carbonate deposits, environments that on Earth have sustained microbial mats

    Weak-Field Gravity of Circular Cosmic Strings

    Get PDF
    A weak-field solution of Einstein's equations is constructed. It is generated by a circular cosmic string externally supported against collapse. The solution exhibits a conical singularity, and the corresponding deficit angle is the same as for a straight string of the same linear energy density. This confirms the deficit-angle assumption made in the Frolov-Israel-Unruh derivation of the metric describing a string loop at a moment of time symmetry.Comment: 15 page

    Self-Organization of Vortex Length Distribution in Quantum Turbulence: An Approach from the Barabasi-Albert Model

    Full text link
    The energy spectrum of quantum turbulence obeys Kolmogorov's law. The vortex length distribution (VLD), meaning the size distribution of the vortices, in Kolmogorov quantum turbulence also obeys a power law. We propose here an innovative idea to study the origin of the power law of the VLD. The nature of quantized vortices allows one to describe the decay of quantum turbulence with a simple model that is similar to the Barabasi-Albert model of large networks. We show here that such a model can reproduce the power law of the VLD well.Comment: 4 pages including 5 figure

    Purcell factor for point-like dipolar emitter coupling to 2D-plasmonic waveguides

    Full text link
    We theoretically investigate the spontaneous emission of a point--like dipolar emitter located near a two--dimensional (2D) plasmonic waveguide of arbitrary form. We invoke an explicite link with the density of modes of the waveguide describing the electromagnetic channels into which the emitter can couple. We obtain a closed form expression for the coupling to propagative plasmon, extending thus the Purcell factor to plasmonic configurations. Radiative and non-radiative contributions to the spontaneous emission are also discussed in details

    Molecule survival in magnetized protostellar disk winds. II. Predicted H2O line profiles versus Herschel/HIFI observations

    Full text link
    We investigate whether the broad wings of H2O emission identified with Herschel towards low-mass Class 0 and Class 1 protostars may be consistent with an origin in a dusty MHD disk wind, and the constraints it would set on the underlying disk properties. We present synthetic H2O line profiles predictions for a typical MHD disk wind solution with various values of disk accretion rate, stellar mass, extension of the launching area, and view angle. We compare them in terms of line shapes and intensities with the HIFI profiles observed by the WISH Key Program. We find that a dusty MHD disk wind launched from 0.2--0.6 AU AU to 3--25 AU can reproduce to a remarkable degree the observed shapes and intensities of the broad H2O component, both in the fundamental 557 GHz line and in more excited lines. Such a model also readily reproduces the observed correlation of 557 GHz line luminosity with envelope density, if the infall rate at 1000 AU is 1--3 times the disk accretion rate in the wind ejection region. It is also compatible with the typical disk size and bolometric luminosity in the observed targets. However, the narrower line profiles in Class 1 sources suggest that MHD disk winds in these sources, if present, would have to be slower and/or less water rich than in Class 0 sources. In conclusion, MHD disk winds appear as a valid (though not unique) option to consider for the origin of the broad H2O component in low-mass protostars. ALMA appears ideally suited to further test this model by searching for resolved signatures of the warm and slow wide-angle molecular wind that would be predicted.Comment: accepted for publication in A&

    Temporal evolution of magnetic molecular shocks I. Moving grid simulations

    Full text link
    We present time-dependent 1D simulations of multifluid magnetic shocks with chemistry resolved down to the mean free path. They are obtained with an adaptive moving grid implemented with an implicit scheme. We examine a broad range of parameters relevant to conditions in dense molecular clouds, with preshock densities between 10^3 and 10^5 cm-3, velocities between 10 and 40 km/s, and three different scalings for the transverse magnetic field: B=0,0.1,1 \mu G \sqrt{n.cm3}. We first use this study to validate the results of Chi\`eze, Pineau des For\^ets & Flower (1998), in particular the long delays necessary to obtain steady C-type shocks, and we provide evolutionary time-scales for a much greater range of parameters. We also present the first time-dependent models of dissociative shocks with a magnetic precursor, including the first models of stationary CJ shocks in molecular conditions. We find that the maximum speed for steady C-type shocks is reached before the occurrence of a sonic point in the neutral fluid, unlike previously thought. As a result, the maximum speed for C-shocks is lower than previously believed. Finally, we find a large amplitude bouncing instability in J-type fronts near the H2 dissociation limit (u ~ 25-30 km/s), driven by H2 dissociation/reformation. At higher speeds, we find an oscillatory behaviour of short period and small amplitude linked to collisional ionisation of H. Both instabilities are suppressed after some time when a magnetic field is present. In a companion paper, we use the present simulations to validate a new semi-analytical construction method for young low-velocity magnetic shocks based on truncated steady-state models.Comment: A&A in pres

    Principes en rhéologie des polymères fondus

    Get PDF
    URL: http://www-spht.cea.fr/articles/T93/082En théorie des polymères, pour des temps suffisamment longs, on peut s'attendre à observer un comportement universel qui intègre le concept de reptation valide pour des temps très longs et la relaxation de Rouse qui s'applique aux temps moins longs. Nous discutons ici l'agencement de ces principes

    Atmospheric Escape from Hot Jupiters

    Full text link
    The extra-solar planet HD209458b has been found to have an extended atmosphere of escaping atomic hydrogen (Vidal-Madjar et al. 2003), suggesting that ``hot Jupiters'' closer to their parent stars could evaporate. Here we estimate the atmospheric escape (so called evaporation rate) from hot Jupiters and their corresponding life time against evaporation. The calculated evaporation rate of HD209458b is in excellent agreement with the HI Lyman-alpha observations. We find that the tidal forces and high temperatures in the upper atmosphere must be taken into account to obtain reliable estimate of the atmospheric escape. Because of the tidal forces, we show that there is a new escape mechanism at intermediate temperatures at which the exobase reaches the Roche lobe. From an energy balance, we can estimate plausible values for the planetary exospheric temperatures, and thus obtain typical life times of planets as a function of their mass and orbital distance.Comment: A&A Letters, in pres
    corecore