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Weak-field gravity of circular cosmic strings
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School of Theoretical Physics, Dublin Institute for Aduanced Studies, IO Burlington Road, Dublin 4, Ireland

Michel A. Vandyck
Physics Department, University College Cork, Cork, Ireland
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(Received 13 August 1992)

A weak-field solution of Einstein s equations is constructed. It is generated by a circular cosmic string
externally supported against collapse. The solution exhibits a conical singularity, and the corresponding
deficit angle is the same as for a straight string for the same linear energy density. This confirms the
deficit-angle assumption made in the Frolov-Israel-Unruh derivation of the metric describing a string
loop at a moment of time symmetry.

PACS number(s): 04.20.Jb, 98.80.Cq

I. INTRODUCTION

In a gauge theory with gauge group 6 spontaneously
broken via the Higgs mechanism to a subgroup H, the
Higgs field must lie on the manifold of degenerate vacua
G/H on the circle at spatial infinity. Thus if vr, (G/H) is
nontrivial, stringlike configurations with finite energy per
unit length will exist for which the Higgs field at spatial
infinity winds nontrivially around G/H. Such so-called
cosmic strings have received much attention in recent
years, especially as providing possible mechanisms for the
formation of large-scale structure in the Universe [l].
Accretion wakes have been proposed to form behind
infinitely long relativistic strings, which may help explain
the observed large-scale filaments. Moreover, Vilenkin
[2] has suggested that long-lived closed loops of string
might act as seeds for galaxy and cluster formation.

The derivation of the gravitational field outside a
cosmic string, in the weak-field approximation, was car-
ried out by Vilenkin [3], who investigated the case of an
infinitely thin straight string. The main features of this
solution are that the spacetime exterior to the string is
flat, and that all along the string, the spacetime has a
conical singularity with deficit angle 5$=8vrGp, where p
is the linear energy density. (The solution to the exact
Einstein equations has since been derived [4].)

Closed string loops have been studied by Frolov, Israel,
and Unruh (FIU) [5]. Using the initial-value formulation
[6], they constructed a family of momentarily stationary
circular loops, which are considered as thin loops of
string either at the time of formation or at the turning
point between expansion and collapse. One of the

*On leave from Lyman Laboratory of Physics, Harvard Uni-
versity, Cambridge, MA 02138.

~Present address: Dept. of Mathematics, Statistics, and Com-
puter Science, Dalhousie University, Halifax, Nova Scotia, Can-
ada B3H 4H6.

characteristics of the FIU method, which has the merit of
taking into account the exact nonlinear field equations, is
that it imposes a priori that all points on the circular
string be conical singularities of spacetime with deficit
angle 5$=8vrGp. This is a reasonable assumption be-
cause of the observation [5] that an infinitely thin circular
string, when viewed from arbitrarily close to the core, is
indistinguishable from an infinitely thin straight string,
and that all the points on the circular string may thus be
assumed to be conical singularities with the same angular
deficit as for a straight string of equal linear energy densi-
ty.

The question we ask is the following: instead of mak-
ing the above assumption, can one deduce from the field
equations, at least in the weak-field limit, the fact that all
the points on the circular string are conical singularities?
As a first step in this direction one may construct,
without any special hypothesis on conical singularities, a
solution produced by a circular source generated by a
stress-energy tensor obtained by adapting the method
used by Vilenkin [3] for a straight string. This solution
could then be examined for possible conical singularities,
and the corresponding angular deficits, if any, could be
calculated. We carry out such an investigation in this pa-
per.

An important difference between our analysis and that
of FIU is that we seek a solution which is stationary,
whereas FIU consider a circular string loop which is
momentarily at rest. Conceivably, a nonstationary solu-
tion at a moment of time symmetry may differ from a sta-
tionary solution by the presence of gravitational waves,
but FIU considered precisely a class of particular solu-
tions devoid of such free gravitational radiation. There-
fore, a comparison between the two cases is physically
reasonable. Of course an isolated stationary circular
string is unphysical, since it would tend to collapse. To
overcome this problem, radial stresses, the values of
which are determined by stress-energy conservation con-
ditions, are introduced to support the string. It will be
seen that these stresses do not contribute to the value of
the angular deficit.
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In Sec. II, we establish the appropriate form of the
stress-energy tensor for this problem. We derive and
solve the weak-field Einstein equations in Secs. III and
IV. In Sec. V, we demonstrate that the solution does
indeed exhibit conical singularities with the same angular
deficit as for a straight string with the same linear energy
density, thus fully supporting and agreeing with the FIU
hypothesis.

In this paper, we use units in which A=c =1, take the
metric to have signature ( —,+, +, +) and adopt the
geometrical conventions of [7].

However, such a localization does not occur for the radi-
al stress T„'—=6 required to support the ring. Given that
the ring is externally supported, this radial stress is not
confined to the core. (In what follows, we choose to sup-
port the ring from infinity. )

Following Vilenkin, we can show that P =@=0.
Indeed, taking an arbitrary string cross-section
A, = [(P,r, z):P= const ] and using stress-energy conserva-
tion (T„'~ =0), we have

0= J T„~~ drdz. (2.8)

II. THE STRESS-ENERGY TENSOR AND THE METRIC

In this section, we establish the stress-energy tensor
T„ for a loop of cosmic string arising from a spontane-
ously broken gauge theory. In the case of an infinitely
long straight string, all components of the stress-energy
tensor are localized on the core of the string, that is the
region of spacetime where the Higgs field unwinds and
thus does not lie on the manifold of degenerate vacua.
The radius of this region is of the order of the Compton
wavelength of the Higgs field [8], generically a micro-
scopic distance. Thus, when considering the gravitation-
al effects of the string, it is physically reasonable to make
the thin-string approximation where the stress-energy
tensor is localized on an infinitely thin line.

A circular source produces an axially-symmetric gravi-
tational field, and the most general stationary metric of
this type may be cast in the form [7]

ds 2 e 2vdt 2+ e 2g —2vr 2d y2+ e 2q —2v( dr +dz (2.1)

where the three functions v, g, and 2) depend only on r
and z, and x =—( t, P, r, z) denotes cylindrical coordinates.

The form of the Einstein tensor for this metric, togeth-
er with the Einstein field equations G„=—~T„
(sc=8vrG) implies that the most general stress-energy ten-
sor compatible with (2.1) is

a 0 0 0
0 y 0 0
0 0 5 e
0 0 e P

(2.2)

T„=T„5(r—a)5(z), (2.3)

where T„ is the cross-sectional integral of T„. There-
fore this limit yields, in obvious notation,

where a, P, y, b, , and e are solely functions of r and z.
In passing to the limit of an infinitely thin loop of

string with radius a, lying in the x-y plane and centered
at the origin, we obtain (with the exception of T„, dealt
with below) the stress-energy tensor as

In the weak-field limit, the components of the stress-
energy tensor (2.2) are taken to be of the same order of
magnitude as the metric functions v, g, and 2), which are
assumed to be small compared to unity. Thus, to lowest
order, the only Christoffel symbols for the metric (2.1)
that contribute to the covariant derivative of the stress-
energy tensor are I "&&= ra—nd I ~„&=I ~&„=1/r. Tak-
ing p=z and noting that T, '= T,~=O, we may integrate
by parts to get

0 T f/'+ T zgA, (2.9)

III. THE FIELD EQUATIONS
AND STRESS-ENERGY CONSERVATION

(no sum over r and z). There is no boundary contribution
since T, is localized on the string core. We emphasize
that, in contrast with the case of the straight string, a
similar argument would fail to show that T,"=0 because
T„"—:6 is nonzero outside the core. We obtain the
desired result (F=P=O) by taking A, =r, z in (2.9). The
last undetermined function, 6, in the stress-energy tensor
can be found in terms of y from the stress-energy conser-
vation equations, and will be calculated in the next sec-
tion.

At this stage, we have deduced that the stress-energy
tensor for a thin circular matter source supported by
external radial stresses is given by (2.2) with P=e=O, and
a, 5 and y as above. We rewrite @7=—p and y=k,
where p and k are the linear energy density and the az-
imuthal stress per unit length, respectively. Henceforth,
we make the thin-string approximation and use this form
of the stress-energy tensor.

To specialize to the case of a cosmic string in a spon-
taneously broken gauge theory, we would apply the equa-
tion of state [3] for string matter k = —p. (This equation
of state is dictated by Lorentz invariance in the straight-
string case; for a circular string, the azimuthal stress T&~
plays the same role as that of the longitudinal stress T,'
for a straight string. ) We will, however, keep p and k as
two independent parameters. This has the advantage
that we will then be able to compare and contrast ordi-
nary matter, given by k positive and small compared to
p, with string matter, given by k = —p.

a =a5( ra)5(z),

P=P5(r —a)5(z),

y =y5(r —a)5(z),
e=Ã5(r —a)5(z) .

(2.4)

(2 5)

(2.6)

(2.7)
G, '=2V v —V g ——g„—V 2), (3.1)

In the weak-field approximation, the nonzero com-
ponents of the Einstein tensor [9] for the metric (2.1) are,
upon retaining only first-order terms in v, g, and 2),
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G~~= —V q,

6,"= 0—,. „—n—,
1

6,'= —g„„+—(q„—2g„),1

(3.2)

(3.3)

(3.4)

strings, for which 6p= 10 [3],validating the weak-field
approximation as an expansion of v, g, and q in powers of
Gp.

IV. SOLUTIDN OF THE FIELD EQUATIDNS

6„'=g,„+—(g, —il, ),1 (3.5)

where V =—c)„+c)„and V'—:d„+(1/r)d„+d, is the fiat-
space Laplacian operator. (We stress that by "weak-field
approximation, "we mean retaining only first-order terms
in v, rI and g. ) After a short calculation, the field equa-
tions reduce to

z =aN sing,

r =aN sinhcr (O~o. ~ ~, ~g~ ~m),

(4.1)

We note that (3.14) is Poisson's equation for the
Newtonian potential v. The solution is most easily found
[10] in toroidal coordinates (P, o, g). The latter are relat-
ed to cylindrical coordinates (P, r, z) by

V v=4vrG ( —a+ y+ b, ),
V g=8~6y,

V g+ —(„=8vrGb, ,
1

7

rj„=rg„„+2/„,

il, =rg,„+g, .

We integrate (3.9) and (3.10) to get

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

where N =N(o—, g) —= c.osho —cosP. The surfaces
o. =o.

o
=—const are tori whose generating circles have radii

a cschoo and a cotho. o. In particular, the ring r =a, z =0
is now given by cr= ao. (See Fig. 1 in Ref. [5].) In
toroidal coordinates, the metric (2.1) reads

ds = e'dt +—a N sinh oe ~ dP

+a2N 4e~ i ~~(dcr~+dg2) (4.2)

where v, g, and g depend on cr and P.
The potential v can be split into two parts, v=v, +v2,

where v, and v2 satisfy separate Poisson equations

V v, =4vrG(p, +k)5(r —a)5(z), (4.3)
where go is an arbitrary constant to be determined later.

The conservation of energy and momentum [or
equivalently the compatibility conditions for (3.7)—(3.10)]
places constraints on the allowable components of T„',
which in the weak-field limit read

y= (rb) .
Bl"

(3.12)

b, (r, z) =—B(r —a)5(z),k (3.13)

in which 8 denotes the Heaviside step function. Further-
more, Eqs. (3.11) and (3.12) imply that (3.7) and (3.8) are
equivalent. We may therefore discard (3.8), retain (3.7) to
find r), and use (3.11) to express g in terms of i).

Combining all the results, the field equations are
equivalent to solving the following set of equations for v,
g, and g:

The solution of (3.12) for b„with the azimuthal stress y
given by (2.6) and corresponding to supporting the string
from infinity, is

V v =4vrG B(r —a)5(z) . —k
2

I
(4.4)

The function v, is the gravitational potential produced by
a circular ring of matter. This problem is known [10],
and the corresponding solution is

v, = —23~ 6(p+k)N(cr, g)K(tanh( —,'cr))/cosh( —,'o ),
(4.5)

where K denotes the complete elliptic integral of the first
kind.

The formal solution of Poisson's equation with source
p is given by

p(1p )d Vo
v~(r)= —6I lr —rpl

Moreover, the Green's function in toroidal coordinates
has the expansion [11]

V' v=4m. G (p +)k(5r —a)+ —B(r —a) 5(z),k
r

V' g = 8vrGk5(r —a)5(z),

~„(r0)=n no . —

(3.14)

(3.15)

(3.16)

N(o, g)N(oo, itjo).
r ro

X g C „cosm (P —Po) cosn (g —itjo)
m, n =0

XP„ & (ico2shcr & )Q„ i&z( cosho & ),
(4.7)

These equations involve the dimensionless quantities Gp
and Gk. For a cosmic string, k = —p, whereas for ordi-
nary matter, k «p. The largest value of p in a physical-
ly relevant theory occurs for grand unified theory (GUT)

where cr &
——max[a, crpj, cr &

—=minIcr, cro], and the func-
tions P„ i&& and Q„ i&z are toroidal Legendre functions
[12]. The numerical coefficients are
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I (n —m + —,')
Cmn I( + +&) n m

2

where c„—=2 —5„.
In toroidal coordinates, we have

(4.8)
G„(o ) =f dr N '(r, O)P„,i2(cosh'),

0
(4.12)

and we use the abbreviations P„,&2
——P„

Q„,&2
=—Q„,&z for the toroidal harmonic functions.

We now turn to the solution of the g equation. Writ-
ing (3.15) in full

e(r —a)5(z) =a 'N'(a, P)5(g) . (4.9)

v~= 2Gk—N(cr, g)

Inserting (4.9), together with (4.7) and (4.8), into (4.6), we
find the following expression for v2 in toroidal coordi-
nates:

a'9 a'~ =+ =8~Gk5(r —a)5(z),
Br Bz

(4.13)

we can interpret it (after formally replacing r by x) as the
potential produced by a uniform thin rod lying in the x-y
plane, parallel to the y axis at x =a. This is a standard
problem in electrostatics [13], and in cylindrical coordi-
nates the solution reads

X g [F„(a)P„ i&2 (coshcr )
n=0 g(r, z)=2Gk in[[(r —a) +z ]/Ro], (4.14)

+G„(o )Q„,&2(cosho )]s„cosng,
(4.10)

(4.1 1)F„(o ) =f dr N '(r, 0)Q„,&z(cosh'),
0

where Ro is a constant to be discussed later.
The last remaining metric function to be found is g.

Solving (3.16) with the above q, we obtain in cylindrical
coordinates

2Gk
1

(r —a) +z
r, z = —iso+ r ln

r Ro
(r —a) +z—a ln

a +z
r —a—2r +2z arctan

z
a+ arctan
z

(4.15)

in which an arbitrary integration function of z has been
determined by the requirement that the solution be regu-
lar on the z axis. Calculating the angular deficit about
the z axis yields

5/=2m(1 —e ) . (4.16)

Consequently, demanding that there be no conical singu-
larity along the z axis imposes go=0.

Having determined v, rI, and g, we have formal solu-
tions of the weak-field Einstein equations. We must now
check whether these solutions are valid within the weak-
field approximation. It is clear from (3.14) and (3.15) that
v and g are determined only up to an additive constant.
Moreover, by virtue of (3.16), any constant added to g
may be absorbed in a redefinition of go, leaving the struc-
ture of the equation unchanged. This freedom of an addi-
tive constant in each of v, g, and g enables one to ensure
that the weak-field approximation is valid at least near
the string, the region of spacetime that will be relevant
when investigating conical singularities and the corre-
sponding deficit angle in the next section. (In the stan-
dard weak-field approximation in Cartesian coordinates
around Minkowski space, these constants are naturally
chosen so that the potentials vanish at infinity. ) Further-
more, all future results will be seen to be independent of
the particular choice of these additive constants.

Within the model of an infinitely thin string, there is no
natural way to determine the additive constants, since
any choice leads to some of the potentials becoming
infinite near the string core, invalidating the weak-field

approximation. [For instance, irrespective of the value of
Ro in (4.14), g is infinite at the ring. ] However, a physi-
cal string always has a nonvanishing thickness, some-
thing, strictly speaking, beyond the realm of our thin-
string model. To give, nevertheless, a value to these con-
stants, we may formally consider a slightly fattened string
of core radius R„„,and fix the additive constants by
demanding that the potentials be small at distances of or-
der R, „, from the infinitely thin ring. (For instance, tak-
ing RO=R„„ in (4.14) leads to g=O at distances of the
order of R„„from the infinitely thin string. ) In what
follows, we stay within the infinitely thin string model,
and we implement the weak-field approximation by the
requirement that v, g, g (( 1 on distance scales of order
R, „ from the infinitely thin string. The actual value
selected for R„„does not follow from the thin-string
model, and must be supplied by the underlying physical
theory. We emphasize that we are mathematically deal-
ing with an infinitely thin string core, with only the faint
memory of its physical origin in the choice of R„„.It is,
however, important to stress that all future results will be
independent of the particular choice of R p„.

V. ANGULAR DEFICIT

To check the metric (4.2) for conical singularities on
the ring o. = ~, we must examine circles o. =o.

o at con-
stant t and P around the ring, and calculate the ratio of
the proper perimeter to the proper radius in the limit that
the proper radius tends to zero. For t and P constant, the
metric (4.2) becomes
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ds =a N e" (do +dP)
and the angular deficit 5t/r is given by

f dg(N e" )~

51( =2m — lim
~o f dcr N e"

~0

(5.1)

(5.2)

(5.10)

already found in (5.5), once again seen to be independent
of the choice of the additive constants. A similar method
was employed by Vilenkin [3].

VI. CONCLUSION

v, —+ —2G(p+k)cr, o ~co . (5.3)

(In establishing this formula, we use the asymptotic ex-
pression K(tanh(cr/2)) —+o /2 when o tends to infinity
[14].) In the Appendix, we show that v2~0 as cr~co.
Thus, the asymptotic value of v does not depend on
v2, and this shows that the radial stresses
T„"=(k/r)B(r —a)5(z) do not contribute to the potential
near the ring. Furthermore, the asymptotic behavior of g
near the ring is

rj(cr, g)~ —4Gko, o ~ ~ (5.4)

With (5.3) and (5.4), it is straightforward to evaluate
the integral (5.2) for the deficit angle 6$ as

5/=4m G (p —k), (5.5)

which will be analyzed in the conclusion.
The same result for the angular deficit can be obtained

in a different manner, which also sheds light on the
spacetime structure near the ring in the weak-field limit.
Using the asymptotic forms of v and g near the ring, the
metric (5.1) becomes

2 4 2 2o +4G—(P.—k)v+2b(d 2+dq2)

(5.6)

where b denotes the dimensionless combination of all ad-
ditive constants appearing in the potentials. If we now
seek coordinates (cr', f'), so that, near the ring, the metric
is locally Aat,

ds =4a e (do' +dP' ), cr~~,
we see that we must take

e e I" ' Ido. =e do'

(5.7)

(5.8)

where A, —=2G(p —k). Thus, to first order in A, , this yields

From this formula, one sees that the value of 6$ is in-
dependent of any additive constants that might appear in
v or q, as emphasized above. In this calculation we are
thus free to ignore such additive constants, and this will
be done below.

In order to evaluate the limit appearing in (5.2), we re-
quire the asymptotic form of v and g for large values of
cr. The contribution of v, from (4.5) to the asymptotic
behavior of v for o tending to infinity is readily found to
be

In this paper, we constructed a stationary, axially-
symmetric metric satisfying Einstein s weak-field equa-
tions for a source describing an infinitely thin ring of ra-
dius a, linear mass density p, and azimuthal stress per
unit length k. The conservation of stress-energy required
the presence of a radial stress

T„"=—e(r —a)S(z)
k
r

(6.1)

to support the ring. The metric obtained exhibits a coni-
cal singularity along the ring, with deficit angle

6$=4~G(p —k) . (6.2)
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In the case of a ring of pressureless dust (k =0), a con-
ical singularity arises, with deficit angle 4~6p. This is
usually interpreted by saying that, because of the pres-
ence of the singularity, such a source cannot remain sta-
tionary and must collapse.

When the ring is made of "ordinary" matter (k )0,
k ((p), the conical singularity is still present but is less
severe than for pressureless dust. Such a source is also
considered as nonphysical since, unless the (positive)
pressure equals the energy density, the angular deficit Sent

is still nonzero.
When the ring is made of "string" matter (k = —p),

we recover Vilenkin's result 5/= 8~Gp. This result is in-
teresting for two reasons: first, it shows that one-half of
the angular deficit of the string source is of "nonstring"
origin (since one-half of the eff'ect remains for pressureless
dust); second, it establishes from the geld equations,
within the thin-string model, that indeed, a conical singu-
larity is present along a circular string, and that the an-
gular deficit takes the same value as for a straight string
of the same linear mass density. This was an assumption
made by FIU in their investigation of circular cosmic
strings at an instant of time symmetry. Our formalism
provides a weak-field proof of the validity of the FIU hy-
pothesis.

o'= (1 A)r cA, —b.,
— — (5.9)

Consequently, if we define it'=(1 —
A, )P, we note that we

do obtain the metric in the form (5.7). It is then clear
that f' runs from 0 to 2m. (1 —A. ), and that we thus recover
the deficit angle

APPENDIX: ASYMPTOTIC BEHAVIOR
OF v2 NEAR THE RING

Establishing the asymptotic behavior of the potential
v2 (4.10) near the ring, namely, for o' tending to infinity,
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G„(cr)—:J drN (&,0)P„&&2(cosh&) .
E.

(A2)

To go further, one must consider the asymptotic value of
P„,i (2c ohso ).

For n =0, the corresponding toroidal harmonic is ex-
pressible in terms of the complete elliptic integral of the
first kind [17] as

P, & (2c osho )=2rr 'K(tanh( —,
'o. ))/cosh( —,'o ) .

For very large cr, this is asymptotically given [14] by

P, &2 (cosho )~2' 'o.e

(A3)

(A4)

is a delicate matter. This is due to the fact that the
source, being of the form (k/r)6(r —a)5(z), decreases
very slowly at infinity when the radius r increases without
limit. The difficulty at infinity in r translates into a
difficulty at 0 in o..

For the calculation of F„(o ) of (4.11), however, the
point o. =0 does not belong to the domain of integration
and one finds, after replacing Q„,z2( coshcr ) by its
asymptotic value [15] and performing the integration,

F„(o )~(2m)' I (n + —,')e '"+" /(n +1)!.

On the other hand, a problem does arise in the calcula-
tion of G„(o ): Near r=0, the toroidal harmonics
P„,& 2(c osh r) tend to 1 for all n [16],whereas the factor
N '(&, 0) appearing in the integrand of (4.12) tends to
2' ~ '. As a result, G„diverges, and a cuto6'c, must be
introduced. If this is done, the integrand is finite every-
where, and the regularized G„(o ), denoted by G„(o ),
reads

G, (o ) (2/m)' o/I ( —,')
GR(cr )~(2/~)1/2(n 2) te(n

—1)a/I (n + 1
) n )2

(A7)

(A8)

so that finally, the asymptotic form of the series (4.10) be-
comes

v2~ —Gk[2'~ m. A(E)+o(e )] . (A9)

As one can see, for every nonvanishing value of c,, the
potential v2 tends to a constant on the ring, that is, for o.

tending to infinity. The fact that v2 is asymptotically
constant is sufficient to establish the result (5.5) of the
deficit angle, irrespective of the value of the constant. It
is, however, possible to go one step further and renormal-
ize the potential so that vz vanishes at the ring. This
amounts to subtracting from vz the (o, lb)-independent
term 2'~ m A (E). [Although, when the cutoff E tends to 0,
the constant A(e) diverges, this procedure is nothing
more than a conventional renormalization. ]

For n ~ 1, the asymptotic expression [18] of
—1/2(coshO ) is

P„&&2 err —'~ (n —1)!e'" '~ ' /I (n +—,'), n + 1 . (A5)

When the asymptotic expressions (A4) and (A5) are
inserted into the integral, ( A2) for G„(o ), the following
results are obtained:

Go (o )—+ A (s), A (E)= J de '(r, 0)P, i2(cosh'),

(A6)

[1]Ya. B. Zel'dovich, Mon. Not. R. Astron. Soc. 192, 663
(1980); A. Vilenkin, Phys. Rep. 121, 263 (1985); R. H.
Brandenberger, Phys. Scr. T36, 141 (1991).

[2] A. Vilenkin, Phys. Rev. Lett. 46, 1169 (1981);46, 1496(E)
(1981);Phys. Rev. D 24, 2082 (1981).

[3] A. Vilenkin, Phys. Rev. D 23, 852 (1981).
[4] J. R. Gott III, Astrophys. J. 288, 422 (1985); W. A.

Hiscock, Phys. Rev. D 31, 3288 (1985); B. Linet, Gen. Re-
lativ. Gravit. 17, 1109 (1985).

[5] V. P. Frolov, W. Israel, and W. G. Unruh, Phys. Rev. D
39, 1084 (1989).

[6] R. Arnowitt, S. Deser, and C. W. Misner, in Gravitation:
An Introduction to Current Research, edited by L. Witten
(Wiley, New York, 1962).

[7] J. L. Synge, Relativity: The General Theory (North-
Holland, Amsterdam, 1960), Chap. 8.

[8] J. Preskill, in Architecture of the Fundamental Interactions
at Short Distances, Proceedings of the Les Houches Surn-
mer School, Les Houches, France, 1985, edited by P. Ra-
mond and R. Stora, Les Hou ches Summer School
Proceedings Vol. 44 (North-Holland, Amsterdam, 1987)~

[9] S. Chandrasekhar and J. L. Friedman, Astrophys. J 175,
379 (1972).

[10]H. Bateman, Partial Differential Equations of Mathemati

cal Physics (Cambndge University Press, Cambridge, Eng-
land, 1952), p. 461.

[11]P. M. Morse and H. Feshbach, Methods of Theoretical
Physics (McGraw-Hill, New York, 1953), p. 1304.

[12]Handbook of Mathematical Functions, edited by M.
Abramowitz and I. A. Stegun (Dover, New York, 1964),
Chap. 8.

[13]W. K. H. Panofsky and M. Philips, Classical Electricity
and Magnetism (Addison-Wesley, New York, 1955), Chap.
4; W. R. Smythe, Static and Dynamic Electricity
(McGraw-Hill, New York, 1939), Chap. 4.

[14]I. Gradstein and I. Ryzhik, Table of Integral, Series, and
Products (Academic, New York, 1980), Chap. 8, p. 904,
Eqs. (8.110), (8.111),(8.112.3), and (8.13.3).

[15]A. Erdelyi et al. , Higher Transcendental Functions
(McGraw-Hill, New York, 1953), Vol. I, Chap. 3, p. 164,
Eq. (3.9.2.21).

[16]Erdelyi et al. , Higher Transcendental Functions [15], Vol.
I, Chap. 3, p. 163, Eq. (3.9.2.8).

[17]Erdelyi et al. , Higher Transcendental Functions [15], Vol.
I, Chap. 3, p. 173, Eq. (7).

[18]Erdelyi et al. , Higher Transcendental Functions [15], Vol.
I, Chap. 3, p. 164, Eq. (3.9.2.19).


