1,710 research outputs found
Dispersive shock waves in the Kadomtsev-Petviashvili and Two Dimensional Benjamin-Ono equations
Dispersive shock waves (DSWs) in the Kadomtsev-Petviashvili (KP) equation and
two dimensional Benjamin-Ono (2DBO) equation are considered using parabolic
front initial data. Employing a front tracking type ansatz exactly reduces the
study of DSWs in two space one time (2+1) dimensions to finding DSW solutions
of (1+1) dimensional equations. With this ansatz, the KP and 2DBO equations can
be exactly reduced to cylindrical Korteweg-de Vries (cKdV) and cylindrical
Benjamin-Ono (cBO) equations, respectively. Whitham modulation equations which
describe DSW evolution in the cKdV and cBO equations are derived in general and
Riemann type variables are introduced. DSWs obtained from the numerical
solutions of the corresponding Whitham systems and direct numerical simulations
of the cKdV and cBO equations are compared with excellent agreement obtained.
In turn, DSWs obtained from direct numerical simulations of the KP and 2DBO
equations are compared with the cKdV and cBO equations, again with remarkable
agreement. It is concluded that the (2+1) DSW behavior along parabolic fronts
can be effectively described by the DSW solutions of the reduced (1+1)
dimensional equations.Comment: 25 Pages, 16 Figures. The movies showing dispersive shock wave
propagation in Kadomtsev-Petviashvili II and Two Dimensional Benjamin-Ono
equations are available at https://youtu.be/AExAQHRS_vE and
https://youtu.be/aXUNYKFlke
Glandular trichomes and essential oils of Salvia glutinosa L.
The aerial organs of Salvia glutinosa L. bear indumentum with two types of trichomes: simple and multicellular nonglandular trichomes, and stalked and sessile dense glandular trichomes. Glandular trichomes are extremely long-stalked and dense on the stem and calyx surfaces. However, sessile glands are rare on the stem, calyx and leaf adaxial surfaces and dense on the leaf abaxial surface. Secretion accumulates in a subcuticular space and is released to the outside by cuticle rupture. Water distilled essential oil from dried aerial parts of S. glutinosa was analysed by GC/MS. The main constituent was identified as 1-octadecanol (11.6%)
Drexel University
We present a 3D matching framework based on a many-to-many matching algorithm that works with skeletal representations of 3D volumetric objects. We demonstrate the performance of this approach on a large database of 3D objects containing more than 1000 exemplars. The method is especially suited to matching objects with distinct part structure and is invariant to part articulation. Skeletal matching has an intuitive quality that helps in defining the search and visualizing the results. In particular, the matching algorithm produces a direct correspondence between two skeletons and their parts, which can be used for registration and juxtaposition. 1
Statistical Modeling of Single Target Cell Encapsulation
High throughput drop-on-demand systems for separation and encapsulation of individual target cells from heterogeneous mixtures of multiple cell types is an emerging method in biotechnology that has broad applications in tissue engineering and regenerative medicine, genomics, and cryobiology. However, cell encapsulation in droplets is a random process that is hard to control. Statistical models can provide an understanding of the underlying processes and estimation of the relevant parameters, and enable reliable and repeatable control over the encapsulation of cells in droplets during the isolation process with high confidence level. We have modeled and experimentally verified a microdroplet-based cell encapsulation process for various combinations of cell loading and target cell concentrations. Here, we explain theoretically and validate experimentally a model to isolate and pattern single target cells from heterogeneous mixtures without using complex peripheral systems.Wallace H. Coulter Foundation (Young Investigator in Bioengineering Award)National Institutes of Health (U.S.) (Grant R01AI081534)National Institutes of Health (U.S.) (Grant R21AI087107
Nanostructured Optical Photonic Crystal Biosensor for HIV Viral Load Measurement
Detecting and quantifying biomarkers and viruses in biological samples have broad applications in early disease diagnosis and treatment monitoring. We have demonstrated a label-free optical sensing mechanism using nanostructured photonic crystals (PC) to capture and quantify intact viruses (HIV-1) from biologically relevant samples. The nanostructured surface of the PC biosensor resonantly reflects a narrow wavelength band during illumination with a broadband light source. Surface-adsorbed biotarget induces a shift in the resonant Peak Wavelength Value (PWV) that is detectable with <10 pm wavelength resolution, enabling detection of both biomolecular layers and small number of viruses that sparsely populate the transducer surface. We have successfully captured and detected HIV-1 in serum and phosphate buffered saline (PBS) samples with viral loads ranging from 104 to 108 copies/mL. The surface density of immobilized biomolecular layers used in the sensor functionalization process, including 3-mercaptopropyltrimethoxysilane (3-MPS), N-gamma-Maleimidobutyryl-oxysuccinimide ester (GMBS), NeutrAvidin, anti-gp120, and bovine serum albumin (BSA) were also quantified by the PC biosensor
Use of commercial off-the-shelf digital cameras for scientific data acquisition and scene-specific color calibration
Author Posting. © Optical Society of America, 2014. This article is posted here by permission of Optical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Optical Society of America A: Optics, Image Science, and Vision 31 (2014): 312-321, doi:10.1364/JOSAA.31.000312.Commercial off-the-shelf digital cameras are inexpensive and easy-to-use instruments that can be used for quantitative scientific data acquisition if images are captured in raw format and processed so that they maintain a linear relationship with scene radiance. Here we describe the image-processing steps required for consistent data acquisition with color cameras. In addition, we present a method for scene-specific color calibration that increases the accuracy of color capture when a scene contains colors that are not well represented in the gamut of a standard color-calibration target. We demonstrate applications of the proposed methodology in the fields of biomedical engineering, artwork photography, perception science, marine biology, and underwater imaging.T. Treibitz is an
Awardee of the Weizmann Institute of Science—National
Postdoctoral Award Program for Advancing Women in
Science and was supported by NSF grant ATM-0941760.
D. Akkaynak, J. Allen, and R. Hanlon were supported by
NSF grant 1129897 and ONR grants N0001406-1-0202 and N00014-10-1-0989 and U. Demirci by grants R01AI093282,
R01AI081534, and NIH U54EB15408. J. Allen is grateful for
support from a National Defense Science and Engineering
Graduate Fellowship
Attention deficit hyperactivity symptoms predict problematic mobile phone use
Attention-deficit-hyperactivity disorder (ADHD) is the most commonly diagnosed childhood disorder characterised by inattention, hyperactivity/impulsivity, or both. Some of the key traits of ADHD have previously been linked to addictive and problematic behaviours. The aim of the present study was to examine the relationship between problematic mobile phone use, smartphone
addiction risk and ADHD symptoms in an adult population. A sample of 273 healthy adult volunteers completed the Adult
ADHD Self-Report Scale (ASRS), the Mobile Phone Problem Usage Scale (MPPUS), and the Smartphone Addiction Scale
(SAS). A significant positive correlation was found between the ASRS and both scales. More specifically, inattention symptoms
and age predicted smartphone addiction risk and problematic mobile phone use. Our results suggest that there is a positive
relationship between ADHD traits and problematic mobile phone use. In particular, younger adults with higher level of inattention symptoms could be at higher risk of developing smartphone addiction. The implication of our findings for theoretical
frameworks of problematic mobile phone use and clinical practice are discussed
Coherent diffraction of single Rice Dwarf virus particles using hard X-rays at the Linac Coherent Light Source
Single particle diffractive imaging data from Rice Dwarf Virus (RDV) were recorded using the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS). RDV was chosen as it is a wellcharacterized model system, useful for proof-of-principle experiments, system optimization and algorithm development. RDV, an icosahedral virus of about 70 nm in diameter, was aerosolized and injected into the approximately 0.1 mu m diameter focused hard X-ray beam at the CXI instrument of LCLS. Diffraction patterns from RDV with signal to 5.9 angstrom ngstrom were recorded. The diffraction data are available through the Coherent X-ray Imaging Data Bank (CXIDB) as a resource for algorithm development, the contents of which are described here.11Ysciescopu
Interaction of Colloidal Particles with Surfaces of Biological Significance
The adhesion of colloidal gold on membranes was examined
with an electron microscope with protein on the membrane, on
the colloidal particles and present on both membrane and particles.
The conditions for best adhesion were determined. Quantitative
measurements were caNied out using adhesion to the membrane
to monitor diffusion, centrifugation and electrophoresis of colloidal
particles. Electrophoresis in a centrifugal field was used as a nul
method to determine the charge on the colloidal particle
- …
