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Abstract

We present a 3D matching framework based on a
many-to-many matching algorithm that works with skele-
tal representations of 3D volumetric objects. We demon-
strate the performance of this approach on a large
database of 3D objects containing more than 1000 exem-
plars. The method is especially suited to matching objects
with distinct part structure and is invariant to part ar-
ticulation. Skeletal matching has an intuitive quality
that helps in defining the search and visualizing the re-
sults. In particular, the matching algorithm produces a di-
rect correspondence between two skeletons and their
parts, which can be used for registration and juxtaposi-
tion.

1. Introduction

3D object models are now widespread and are used
in many diverse applications, such as computer graph-
ics, scientific visualization, CAD, computer vision, med-
ical imaging, etc. Large databases of 3D models are now
publicly available, such as the Princeton Shape Bench-
mark Database [19] or the 3D Cafe repository [1], with
datasets contributed by the CAD community, com-
puter graphic artists or scientc visualization commu-
nity. The problem of searching for a specific shape in a
large database of 3D models is an important area of re-
search. Text descriptors associated with the 3D shapes can
be used to drive the search process, as is done for 2D im-
ages [9, 16]. However, text descriptions may not be avail-
able and furthermore, could not apply for part-matching or
similarity-based matching.

Matching 3D objects is a difficult problem, with a com-
plex relation to the 2D shape-matching problem. While the
3D nature of the representation helps remove some of the
viewpoint, lighting, and occlusion problems in computer vi-
sion, other issues arise. Of course, the added dimension and
the inherent increase in data size make the matching pro-

cess more computationally expensive. Furthermore, many
of the models are degenerate, containing holes, intersect-
ing polygons, overly thin regions, etc. And there are many
different types of matching that may be desirable. Given a
query object, one may want to search an entire database for
a matching exemplar, if one exists. On the other hand, if the
database contains categorical models, one may want to find
the category to which the query exemplar belongs.

In this paper, we use the curve-skeleton of a 3D shape to
drive the matching process. The skeleton is a useful shape
abstraction that captures the essential topology of an object
in both two and three dimensions. It provides the follow-
ing characteristics, not present in global shape descriptors:
Part/Component Matching: curve-skeletons incorporate the
notion of parts or components and so they can accommo-
date part matching, where the object to be matched is part of
a larger object, or vice versa. This feature can give the users
more control over the matching algorithm, allowing them to
specify what part of the object they would like to match or
whether the matching algorithm should weight one part of
the object more than another.
Registration and visualization: The skeleton can be used to
register the two matched objects and visualize the result in
a common space. This is very important in scientific appli-
cations where one is interested in both finding a similar ob-
ject and understanding the extent of the similarity [21].
Intuitiveness: The skeleton is an intuitive representation of
shape and can be easily understood by the user, providing
more control in the matching process.
Articulated transformation invariance: The method pre-
sented here can be used for articulated object matching, be-
cause the skeleton topology does not change as a result of
articulated motion. An example was shown in [21].

This work enhances the framework presented in [21] by
using a new skeletonization algorithm and an extension of
the many-to-many matching algorithm introduced in [12].
In [21], the idea of using skeletons for matching was de-
scribed; however, only a small database was used for exper-
imentation, and in general, the methodology was not scal-
able. In this paper, the entire methodology has been re-
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vised by using a more robust skeletonization algorithm and
a more robust matching algorithm. We demonstrate the ef-
ficacy of this new matching framework on the objects from
the Princeton Shape Database [19]. Our matching algo-
rithm is based on establishing correspondences among two
skeletal representations via distribution-based matching in
metric spaces. While the performance of our algorithm is
comparable to that of other existing 3D matching methods
(eg. [14, 19]), the locality of our skeletal representation and
matching algorithm has some other benefits, such as allow-
ing part matching, articulated matching, etc.

2. Previous Work

Work related to this paper include 3D matching, skeleton
detection, graph matching and point-to-point matching.

A number of different approaches have been proposed
for the matching problem. Using a simplified description of
a 3D model, usually in lower dimensions (also known as a
shape signature), reduces the 3D matching problem to com-
paring these different signatures. The dimensional reduction
and the simple nature of these shape descriptors make them
ideal for applications involving searching in large databases
of 3D models. Osada et al. in [14] propose the use of a dis-
tribution, sampled from one of many shape functions, as
the shape signature. Among the shape functions, the dis-
tance between two random points on the surface proved to
be the most effective at retrieving similar shapes. In [19], a
shape descriptor based on 2D views (images rendered from
uniformly sampled positions on the viewing sphere), called
the Light Field Descriptor, performed better than descrip-
tors that use the 3D properties of the object. In [11], Kazh-
dan et al. propose a shape description based on a spherical
harmonic representation.

Related to the work described here is the 1D skeleton de-
termination (also known as the curve-skeleton). This is re-
lated to the medial surface. A curve-skeleton is used both
for its intuitiveness and for its simplicity even though it is
not unique. There are many skeleton extraction techniques:
thinning-based methods attempt to iteratively peel layers
off a voxelized representation of the object while attempt-
ing to maintain the topology [7]; geometric methods use
Voronoi diagrams to determine a medial axis [3]; distance
field methods use a distance function to classify and retain
centered voxels [22]; while a continuous quench function
computed from the object, identifies the extremes as me-
dial axis points [4]. For a full description, please see [6].

Most of the previous work on point and skeleton match-
ing has focused on solving one-to-one correspondence
problems. Kim and Kak [13] used a combination of dis-
crete relaxation and bipartite matching in model-based 3-D
object recognition in computer vision. Pellilo et al. [15] de-
vised a quadratic programming framework for the matching

of 2D skeletons using a maximal clique formulation. Sid-
diqi et al. combined a bipartite matching framework with a
spectral decomposition of graph structure to match shock
graphs [20].

The problem of many-to-many matching has also been
studied, most often in the context of edit-distance (see, e.g.
[18]). In such a setting, one seeks a minimal set of relabel-
ings, additions, deletions, merges, and splits of nodes and
edges that transform one graph into another. In [12], we in-
troduced a many-to-many matching algorithm and studied
its utility for 2D skeletal representations. We used a spe-
cific measure, the Earth Mover’s Distance, to compute dis-
tances between sets of weighted vectors. The matching al-
gorithm in this paper is an extension of the one presented in
[12].

3. Approach

Before matching, the curve-skeleton of each object must
be computed (Section 3.1). Next, we match the exemplar
skeleton against all other skeletons in the database (Sec-
tion 3.2). Finally, we will rank the results and visualize the
best match.

Figure 1. Some examples of 3D shapes and
their computed skeletons.

3.1. The Curve-Skeleton

In this work, we utilize a curve skeleton for the match-
ing. The curve skeleton is a concise intuitive representa-
tion of the object, used in many CAD and computer graph-
ics modeling programs and consists of a set of connected
1D curves (1 voxel thick). Although it is not unique in
3D, it has a number of properties that are advantageous to
matching as enumerated in the introduction: intuitiveness,
part/component matching, registration and articulated trans-
formation invariance.

Our curve-skeleton extraction algorithm works on a vol-
umetric representation of the 3D object. It is based on the



method presented by Chuang et. al. [4] which uses a gen-
eralized potential field generated by charges placed on the
surface of the object. The generalized potential at a point
due to a nearby point charge is defined as a repulsive force,
pushing the point away from the charge with a strength that
is inversely proportional to some power of the distance be-
tween the point and the charge. This step produces a vector
field.

Given a 3D vector field, we use concepts from vector
field visualization to identify two types of seed points that
we will used to construct a curve-skeleton: critical points
and high divergence points. At critical points, the magnitude
of the vector vanishes, which is why they are also called ze-
ros of the vector field. A full discussion of the visualiza-
tion of vector-field topology and the different types of criti-
cal points can be found in [8] and [10]. In addition to crit-
ical points, we also use the divergence of the vector field.
The user specifies a percentage of the highest divergence
value which will be used as a threshold to select new seed
points. By varying this parameter, one can generate an en-
tire hierarchy of skeletons of various complexities and se-
lect the best one for a given application. In the experiments
presented in Section 4, we used a 40% divergence thresh-
old for all our skeletons.

Skeleton segments are discovered using a force-
following algorithm on the underlying vector field, starting
at each of the identified seed points. The force follow-
ing process evaluates the vector (force) value at the
current point and moves in the direction of the vec-
tor with a small pre-defined step. At critical points,
where the force vanishes, the initial directions are deter-
mined by evaluating the eigenvalues and eigenvectors of
the Jacobian at the critical point. For more details on com-
puting the curve-skeleton see [6]. Figure 1 shows a
few examples of 3D objects and their respective skele-
tons.

The skeleton obtained using the above algorithm con-
sists of a set of points sampled by the force following algo-
rithm. Each skeleton point is then equipped with a distance-
transform value [7], a real number specifying the distance
to the closest point on the surface of the object. This addi-
tional information is used by the many-to-many matching
process.

3.2. Many-to-many matching using EMD

To match two 3D skeletons, we use a distribution-based
similarity measure, known as the Earth Mover’s Distance
(EMD) under transformation [5, 12]. The Earth Mover’s
Distance is designed to evaluate dissimilarity between two
multi-dimensional distributions. The EMD approach as-
sumes that a distance measure between single features,
called the ground distance, is given. The EMD then “lifts”

this distance from individual features to full distributions.
The main advantage of using EMD lies in the fact that
it subsumes many histogram distances and permits partial
matches in a natural way. This important property allows the
similarity measure to deal with uneven clusters and noisy
datasets [12].

Figure 2. Computing similarity between two
given objects. Step 1: compute skeletons. In
Step 2 the correspondence is shown with
color coded regions.

Computing the EMD is based on a solution to the well-
known transportation problem [2], whose optimal value de-
termines the minimum amount of “work” required to trans-
form one distribution into the other. More formally, let
P = {(p1, wp1

), . . . , (pm, wpm
)} be the first distribution

with m points, and let Q = {(q1, wq1
), . . . , (qn, wqn

)} be
the second distribution with n points. Let D = [dij ] be
the ground distance matrix, where dij is the ground dis-
tance between points pi and qj . Our objective is to find
a flow matrix F = [fij ], with fij being the flow be-
tween points pi and qj , that minimizes the overall cost
Work(P,Q, F ) =

∑m

i=1

∑n

j=1 fijdij subject to the follow-
ing list of constraints:

fij ≥ 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n
∑n

j=1 fij ≤ wpi
, 1 ≤ i ≤ m

∑m

i=1 fij ≤ wqj
, 1 ≤ j ≤ n

∑m

i=1

∑n

j=1 fij = min
(

∑m

i=1 wpi
,
∑n

j=1 wqj

)

The optimal value of the objective function Work(P,Q, F )
defines the Earth Mover’s Distance between the two distri-
butions.

An extension of the original EMD approach [17] al-
lows us to match point sets that are “non-rigidly” em-
bedded into the Euclidean space by allowing sets to un-
dergo transformations. Assuming that a transformation is
applied to the second distribution, distances dT

ij are de-
fined as dT

ij = d(pi, T (qj)) and the objective function be-
comes Work(P,Q, F ) =

∑m

i=1

∑n

j=1 fijd
T
ij . The minimal



value of the objective function Work(P,Q, F, T ) defines the
Earth Mover’s Distance between the two distributions that
are allowed to undergo a transformation.

An iterative process (which called FT, short for “an op-
timal Flow and an optimal Transformation”), that achieves
a local minimum of the objective function was sug-
gested in [17]. Starting with an initial transformation
T (0) ∈ T from a given T (k) ∈ T , they compute the op-
timal flow F = F (k) that minimizes the objective
function Work(P, T (k)(Q), F ), and from a given opti-
mal flow F (k) they compute an optimal transformation
T = T (k+1) ∈ T that minimizes the objective func-
tion Work(P, T (Q), F (k)). The iterative process stops
when the improvement in the objective function value falls
below a threshold. The resulting optimal pair (F, T ) de-
pends on the initial transformation T (0).

We will use the Earth Mover’s Distance under transfor-
mation between two skeletons as a measure of their similar-
ity: a small value of this distance indicating high similarity
between the two skeletons. Figure 6 shows the distances be-
tween the query and the top matched objects.

Figure 2 shows an example of matching between two
objects: in step 1, the curve-skeleton for each object is
computed while in step 2, the many-to-many matching es-
tablishes the distance and the correspondence between the
two skeletal representations. The skeleton regions that were
matched to each other are shown in the same color in Fig-
ure 2.

4. Experiments

To evaluate the utility of our skeletal representation and
many-to-many matching algorithm, we performed 2 sets of
experiments: 3D base classification and part matching.

We first tested our proposed approach to retrieving sim-

 


Figure 3. Precision/Recall for many-to-many
matching algorithm in object retrieval experi-
ment.

ilar objects on a subset of 1081 objects from the Prince-
ton Shape Benchmark Database [16], grouped into 99 non-
empty classes from both the test and training classifica-
tions [19] (the 3D base classification task). In our exper-
iments, we first created 3D skeletons for each object. We
used a divergence threshold of 40% for all our skeletons.
We then computed the distance from each object to the re-
maining database entries using our many-to-many match-
ing algorithm. If the conceptual classes correspond to bod-
ies which vary only in scale, or by articulated transforma-
tion, our algorithm should return an object that belongs to
the same class as the query. We will classify this as a “cor-
rect matching”. Based on the overall matching statistics, we
observe that in 71.1% of the experiments, the overall best
match selected by our algorithm belonged to the same class
as the query (also known as the nearest neighbor criterion
[19]). In 74.3% of the experiments, the best match belonged
to the same parent class as that of query.

In a second experiment, we asked how many of the mod-
els in the query’s class appear within the top T −1 matches,
where T is the size of the query’s class (first tier [19]). This
number was 17.2%. Repeating the same experiment, but
considering the top 2 × T − 1 matches (second tier [19])
covers 22.7% of the members of the class.

Comparing these results with those reported by Shilane
et. al [19] in Table 4 of their work, it should be noted that
our method outperforms all methods on the nearest neigh-
bor criterion, but does not do as well on the first and second
tier criteria. The sharp drop in the precision-recall curve in
Figure 3 illustrates the loss of precision for the first and
second tier criteria. The precision-recall plot shows the re-
lation between recall (the ratio of models from the class of
the query returned within the top N matches) and the preci-
sion (the ratio of the top N matches that belong to the query
class) [19]. Figure 3 shows the precision-recall plot aver-
aged over all models and looking at the first 20 best matches
only.

In Figure 4, we have presented the matching results for a
small subset of objects. The first column of each row shows
the query object; the remaining elements of each row rep-
resent the top 10 closest objects of the database determined
by our matching algorithm. These are all instances where
the closest object is an object from a similar class. In some
cases, while the algorithm has identified an object with sim-
ilar structure as best match, it was still penalized for select-
ing an object from an incorrect category. The query object
(race car) in row one and its best matched object are an ex-
ample of such a case. They can be attributed to the particular
hierarchy of categories used by the Princeton Shape Bench-
mark Database [16]. When similarity of shape is desired, a
method which relies on shape would help retrieve objects
not normally associated with the exemplar and not typically
categorized with it.



 

 


 

2.4
 
 17.9
 
 18.0
 
 20.4
 
 20.5
 
 20.9
 
 21.0
 
 21.1
 
 21.8
 
 21.9
 


 

 


 

1.5
 
 10.4
 
 12.8
 
 14.0
 
 14.2
 
 14.7
 
 14.8
 
 15.3
 
 15.4
 
 15.5
 


 

 


 

25.8
 
 30.4
 
 35.5
 
 36.2
 
 38.1
 
 43.7
 
 44.1
 
 44.8
 
 44.9
 
 45.3
 


 

 


 

1.3
 
 34.3
 
 34.7
 
 35.3
 
 35.5
 
 35.9
 
 39.8
 
 40.2
 
 40.5
 
 40.6
 


Query
 Top 10 Matched Objects


Figure 4. Models are sorted by the similarity to the query object.

4.1. Visualizing the Similarity

An important aspect of the matching is the computa-
tion of correspondence between the matched objects. Our
many-to-many matching algorithm provides a direct corre-
spondence between the skeleton points of the two matched
objects. This allows one to register the query object to the
database objects and aid in visualization and a better un-
derstanding of the match. The correspondences between the
matched objects are illustrated with color coded regions in
Figures 2 and 5. Global shape descriptors perform poorly
at this task because global information cannot preserve lo-
cal correspondences.

4.2. Part Matching

Matching of a part within a complex whole is useful
for CAD-type databases and also for recognition in laser-
scanned images, which tend to cluster objects together. It is
presumably also central to medical applications in which a
particular configuration is to be found somewhere in a larger
object. Specifically, given a part of an object as a query, one
attempts to locate objects containing similar subparts. Here,
the difficulty lies in the fact that none of the database ob-
jects contains an exact copy of the query.

In our next experiment, we used a query part (a torso)
and matched it against several simple and composite objects
in the database, some containing the query part. The com-
posite objects were obtained by a union operation applied to
two simple objects – the kind of composition one would ex-
pect to encounter in laser-scanned scenes. Figure 5 shows
the query object (and the corresponding skeleton) in (a) and
some of the objects that was matched against in (b). In (c)

Figure 5. Part Matching Example: the query
object in (a) is matched against each of the
objects in (b). The correspondences between
their skeletons are shown in red in (c).

we show the computed correspondence between the query
skeleton and the skeletons of the objects in (b). Points that
match the query skeleton are shown in red.

5. Discussion

Compared to our previous skeletonization method de-
scribed in [21], the potential field-based skeletonization al-
gorithm is more robust to reasonable amounts of noise on
the boundary of the object (see [6]). However, the curve-
skeleton may not be the best abstraction for all types of
objects. For example thin disk-like objects or a mushroom
shape are not well represented by a curve-skeleton. The



EMD-based matching compensates for a certain amount of
differences in skeletonization by looking at loose relation-
ships among the skeleton points.

6. Conclusions and Future Work
In this paper, we have presented a matching framework

that is an extension to our many-to-many matching algo-
rithm in [12]. In addition to new skeletonization and match-
ing approaches, we have demonstrated the performance of
the method on a database of over 1000 objects, with re-
trieval results comparable to the global shape descriptor
methods presented in [19].

The skeleton-based approach has a number of advan-
tages over the global shape descriptor methods. It is an
intuitive representation of 3D objects that can be easily
used to understand the similarities present in the matched
objects. Since our many-to-many matching algorithm pro-
vides a direct correspondence between skeleton points in
two matched objects, one can use this correspondence for
registration and juxtaposition. The skeleton captures both
global and local properties of the shape, so it can be used for
many different matching tasks. This is demonstrated in part
matching, where only a portion of the skeleton is matched.
Part matching is useful in CAD environments or segmenta-
tion of laser-scanned scenes.

As future work, we plan on improving the skeletoniza-
tion code further so that it can correctly handle objects
with thin regions. Our part matching examples have shown
many-to-many matching can be used to locate a part in
a database of composite objects. The inverse problem is
also of interest, where given a composite object, one would
like to identify its component parts among the objects of a
database.
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