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Abstract

High throughput drop-on-demand systems for separation and encapsulation of individual target cells from heterogeneous
mixtures of multiple cell types is an emerging method in biotechnology that has broad applications in tissue engineering
and regenerative medicine, genomics, and cryobiology. However, cell encapsulation in droplets is a random process that is
hard to control. Statistical models can provide an understanding of the underlying processes and estimation of the relevant
parameters, and enable reliable and repeatable control over the encapsulation of cells in droplets during the isolation
process with high confidence level. We have modeled and experimentally verified a microdroplet-based cell encapsulation
process for various combinations of cell loading and target cell concentrations. Here, we explain theoretically and validate
experimentally a model to isolate and pattern single target cells from heterogeneous mixtures without using complex
peripheral systems.
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Introduction

Cell encapsulation in nanoliter volume droplets and patterning

has a broad range of applications including tissue engineering

using biodegradable hydrogels [1], cell printing [2,3,4,5,6,7,8,9],

cell sorting [10], cryobiology [3,11], stem cell differentiation

[12,13], and single cell genomics [14]. These broad applications

emphasize the need to develop and understand the dynamics of

cell encapsulation and isolation processes. There are various

technologies reported to encapsulate cells in media and hydrogel

droplets [15,16,17]. The conventional inkjet printing systems were

adapted [15] as tools to encapsulate cells in droplets and pattern

these cell-encapsulating droplets [18]. There are microfluidic

based cell encapsulation techniques [19], which offer limited

control over the droplet and its position after encapsulation. Cell

printing techniques employ fewer handling steps to pattern cells

and allow handling of a few cells encapsulated in a single droplet at

a time (i.e., drop-on-demand) compared to the existing large

volume methods such as manual cell dilutions. Three inkjet based

droplet generation mechanisms have been reported, i.e., thermal

jet [20], bubble jet [21], and piezo-actuator based ejector [22].

These technologies face viability and functionality challenges in

post-printing due to heat and shear effects on cells during droplet

generation [18,23,24]. Recently, a laser assisted cell patterning

system was developed for cell encapsulation and printing [25].

Alternative approaches such as single to few cells encapsulated in

droplets by acoustic droplet generators were demonstrated [2,4],

and cell-laden hydrogel droplets were generated by a mechanical

solenoid valve in a high-throughput manner [5][7,8,9]. These

approaches could alleviate shear forces to cells, since droplet

volume is relatively larger than total volume of encapsulated cells

and lead to high cellular viability and functionality. All of the

methods listed above aim to precisely control cell density in

encapsulated droplets. However, a statistical model that can

effectively predict the target cell encapsulation phenomena from a

heterogeneous population has not been developed.

Challenges still remain to enable efficient extraction, isolation,

and patterning of cells from heterogeneous cell suspensions and to

keep them alive throughout the process. Although microfluidic

approaches offer deterministic control over the cell encapsulation

process, they require complex instrumentation involving hydrody-

namic focusing and flow control for tracking multiple cells in these

systems [26,27,28,29]. The drop-on-demand based approaches that

achieve high cell viability use larger volume droplets than the cell

size. This makes the encapsulation process random, since cell

encapsulating droplets are generated from a reservoir containing a

cell suspension. On the other hand, they offer simultaneous

encapsulation, isolation and patterning of cells in a single process

step, which is desirable for handling sensitive cell types and for

applications that demand patterned cells after sorting. Further, these

statistical encapsulation systems do not become more complicated,

as the number of cell types increase in the heterogeneous solution.

Several statistical approaches were presented for encapsulation

using various technologies including cell encapsulation in polymers

[16] and emulsions [17], cell separation with micro-well arrays [30],

fluorescence-activated droplet sorting [26], and droplet generation

using microfluidics [27,28,29]. Villani et al. presented a statistical

approach in alginate membrane formulation for cell encapsulation

[16]. Using a passive tool, e.g., a microwell template, Love et al.

experimentally analyzed manual cell loading efficiency for micro-

wells with homogeneous cell types [30]. Abate et al. also presented a

close-packed droplet generation in a closed channel and flow-focus
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to enhance random encapsulation efficiency with control over the

flow and feedback encapsulation signal in a microfluidic channel

[27].

Recently, microchip technologies have created multiple new

avenues through experimental studies to isolate, capture, pattern

cells in microscale fluidic volumes impacting a variety of fields.

However, the emphasis has been on engineering, device modeling

and medical applications, whereas the statistical analysis of such

events has fallen short of focus. Among these microfluidic

manipulation technologies, cell encapsulation processes within

microscale droplet volumes have not been theoretically investigat-

ed from a statistical or stochastic point of view for droplet ejectors.

In this paper, we statistically modeled and experimentally analyzed

random cell encapsulation processes in microdroplets.

Methods

To model the encapsulation process, we assumed that droplets

were generated from a heterogeneous cell suspension consisting of

target and non-target cells. The cell encapsulation process can be

described by using four random variables with respective probabil-

ity distribution functions (PDFs). These random variables are:

number of droplets containing cells, number of cells per droplet,

number of target cells per droplet, and number of droplets

containing only a single target cell. Employing different loading

cell concentrations and target cell concentrations, each random

process can be characterized by the rate of empty droplets, average

number of cells per droplet, number of target cells in the printed

droplets, and the rate of single target cell encapsulation, respectively.

The PDF corresponding to each random variable can be used to

estimate process characteristics based on experimental results. We

followed four steps to analyze our single target cell encapsulation

process: (i) we defined our system as a set of stochastic processes with

random variables, (ii) estimated the minimum number of droplets at

which the variables follow (approximately) a normal distribution,

and determined whether the suggested processes are biased or un-

biased, (iii) established statistical models and parameters for each

random process, e.g., mean (m), variance (s), and Poisson

distribution parameter (l) for the cell encapsulation process, and

(iv) evaluated overall system efficiency to find and encapsulate single

target cells using central limit theorem (CLT) under conditions of

simple random sampling (SRS).

1. Definition of cell encapsulation process with random
variables

Random variables for cell encapsulation process in droplets

were schematically shown in Fig. 1a, b and the setup was

described in detail in Supporting Information S1A and Fig.
S1. A heterogeneous solution of target and non-target cells is

loaded to a droplet ejector. Three random variables represent

number of droplets that contain cells, number of cells in a droplet,

and number of droplets encapsulating only a single target cell,

which are denoted as Xd, Xc, and Xt, respectively, and are defined

at the sampling space from droplet array (n = 100 droplets forming

a 10610 array of patterned droplets). These random variables are

proposed to have three probability distributions, Binomial, Poisson

and a combined distribution, respectively as shown in Fig. 1c–e.

The cell encapsulation process in droplets can be classified into

two discrete random processes: (i) random cell encapsulation in

droplets from a homogeneous cell mixture, and (ii) encapsulation of

a single target cell from a heterogeneous cell mixture. The single

target cell encapsulation could be modeled resulting from an

ensemble effect combined with a high probability of cell

encapsulation using Binomial distribution, and a rare probability

event process that follows Poisson distribution as shown in Fig. 1c
and 1d. A binomial process yields the random variable, Xd, which

gives the number of successes in n Bernoulli trials. In a Bernoulli

trial, ‘‘success’’ is the occurrence and ‘‘failure’’ is the non-occurrence

of the desired event. In our setup, ‘‘success’’ is the event of a droplet

containing cell(s), and ‘‘failure’’ is the event of a droplet being

empty. The random variable, Xc, is expected to follow a Poisson

distribution, since the number of cells per droplet is a rare event in

discrete probability space. The overall system PDF can be obtained

by combining PDFs of the two independent random variables, Xd

and Xc and each PDF is shown in Fig. 1e. The number of droplets

containing a single target cell, Xs, is a variable that depends on two

other variables, namely, number of droplets containing cells, and

number of target cells in a droplet. The parameters for each PDF

can be estimated by using experimental results for independent

random variables in discrete probability space, i.e., in the space of

ejected cell encapsulating droplets.

2. Determination of the sample size for normal
approximation

We have determined the required sample size that would render

the normal approximation appropriate for our analysis. In this

study, cell encapsulation was validated as a random process

provided that it satisfies experimentally the conditions for the law

of large numbers (LLN) for the normal approximation assumption

to hold. As more details are provided in Section 4, the sampling

number to fulfill LLN for the modeled process can be estimated by

predetermined confidence and tolerance levels (Table S3 & S4).

In our experiments, we picked 90% for confidence level and 15%

for tolerance level, which are commonly used values in the

literature [31,32]. The theoretical condition for LLN follows the

below inequality [33,34]:

P
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where P() stands for the probability, k for number of successes, n

for sampling number (i.e., sample size), e for tolerance, 12a for

confidence level and p for probability of success in a single trial or

event. The inequality indicates the required sample size, n, for a

relative frequency to deviate from the probability of an event at a

certain confidence and tolerance level. Therefore, the minimum

required sample size, n, would be:
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A stronger result is provided by the strong law of large numbers,

which states the convergence of k/n to p with probability one in

case of sufficient number of sampling [33,34].

3. Random process modeling
The cell encapsulation process follows a sequential process

based on Bernoulli trials to find a successful case. Binomial process

represents how many times the sequential process will be a success

(i.e., how many of the droplets contain cell(s)) regardless of the

number of cells per droplet. Similarly, when the successful case is

rare, the probability of encapsulating homogeneous target cells

shows Poisson distribution as a special case of Bernoulli trials

[33,34]. Therefore, the overall process of finding droplets that

contain a single target cell among droplets that contain patterned

heterogeneous cells becomes a combination of the two processes.

Here, we verify that our proposed platform follows a binomial
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distribution for cell encapsulation, Poisson distribution for

homogeneous cell encapsulation, and a combined probability

distribution for single target cell encapsulation process based on

experimental results.

PDF of binomial distribution is discussed in Supporting
Information S1B. To compute the probability distribution

requires that a certain event occurs k times in a sequence of n

events. In a discrete probability space, this PDF can be described

with the following formula (eq. 3.1). For the random variable, Xd,

number of droplets that contain cells, is associated with the

occurrence of k successes in n trials [34]:

bn,p(k)~P(Xd~k)~
n

k

 !
pkqn{k, 0ƒkƒn,

where,
n

k

 !
~

n!

(n{k)!k!

ð3:1Þ

The mean and variance of the binomial distribution, bn,p(k), are

m= np and s2 = npq. From the computational perspective, the fast

growth of the factorial function is often handled by the Stirling

approximation formula in the binomial probabilities [35]:

n!~
n

en

ffiffiffiffiffiffiffiffi
2pn
p

(1zen) ð3:2Þ

The quantity, tolerance (en), tends to zero as n goes to infinity. The

convergence is rapid (e.g., n$20), where the error of the

approximation is below 0.5%.

Since high cell concentrations might have lower probability for

single cell encapsulation compared to low cell concentrations, the

low cell concentration and cell volume fraction can be represented

with a Poisson distribution for encapsulation of ‘‘a single cell’’ in a

droplet. The probability distribution can be computed with the

following equation in discrete space (the derivation of Poisson

distribution is discussed in Supporting Information S1C) [34]:

P(Xc~k)&e{l lk

k!
ð3:4Þ

where n is number of droplets, P is probability for the number of

cells in a droplet, and k is the number of cells in a droplet. The m,

s, and l values for Poisson distribution have the following

relations with the average and variance [34]:

l~m~np, s2~npq~l 1{
l

n

� �
ð3:5Þ

where n is the number of all cells per droplet.

In the case of encapsulating a single target cell in a droplet from

a heterogeneous cell mixture, the probability to encapsulate a

single target cell becomes lower than the probability for a

Figure 1. Schematic notation of random variables and probability distribution functions for statistical analysis. A heterogeneous
solution of target and non-target cells is loaded to a droplet ejector. (a) Random cell encapsulation process. (b) Three random variables and one
dependent variable were mapped to a patterned array of cell encapsulating droplets which represents number of droplets that contain cells, number
of cells per droplet, number of target cells, and droplets encapsulating a single target cell, respectively. The probability of the process can be
described as (c) binomial distribution, which represents success and failure corresponding to cell containing and empty droplets, respectively. (d)
Poisson distribution is used for the random variable, Xc, since the number of cells per droplet is the count of occurrence of a rare event (i.e.,
probability of the event is very low) in probability space with respect to the number of sampled droplets and droplet volume. (e) Overall system
random process becomes the combined function of suggested PDFs. The PDFs for the random variables, Xd and Xc, are used for the overall PDF of
the system. The parameter l represents the Poisson coefficient, and m, and s represent mean, and variance of the underlying probability
distributions, respectively. All distribution functions were interpolated to a continuous curve with colored bars on graph indicating the discrete
values.
doi:10.1371/journal.pone.0021580.g001
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homogenous cell mixture. So we attempt both a binomial

distribution and a Poisson distribution model for different cell

loading concentrations. Finally, overall process PDF for a single

target cell encapsulation was modeled using two PDFs: the cell

encapsulation process (modeled as binomial distribution) and

single target cell encapsulation process (modeled as Poisson

distribution). These PDFs were combined to make a single

probability function describing the complete process. The PDF of

the random variable Xs can be obtained by combining the PDFs of

the two random variables, Xd and Xt, (see Table S1). Notice that

Xt cannot be positive when Xd is not positive, in the sense that

Xd = 0 forces Xt = 0. However, conditional on Xd.0, it is

reasonable to assume that Xd and Xt are independent, and hence

PDF of Xs can be written as follows:

P Xs~1ð Þ~P fXt~Xp~1g\fXd~Xbg
� �

~PDFpoisson|PDFbinomial

~
e{llkp

kp!
|

n!

(n{kb)!kb!
Pkb (1{p)n{kb

~
ln!

el(n{kb)!kb!
Pkb (1{p)n{kb

ð3:6Þ

where kb and kp stand for the number of occurrences for the

binomial and Poisson distribution, respectively. Note also that

P(Xs = 0) = 12P(Xs = 1).

4. System evaluation using CLT and simple random
sampling (SRS)

Following CLT (as described in Supporting Information
S1D), single cell encapsulation in a droplet as random variable X

and any positive real constant k follows the Chebyshev’s inequality

[33]:

P X{mj jƒksð Þƒ 1

k2
ð4:1Þ

Based on this inequality, we can estimate the conditions with a

certain confidence level following CLT based on a simple random

sampling process. The confidence level can be determined

following the conditions of the experiment or user preference

according to the type of application. For cell encapsulation model,

we chose 90% confidence level, (hence 12a= 0.90, which implies

a= 0.10), and 15% tolerance, e, for lowest probability (p = 0.5) for

the number of sampled droplets. LLN was shown in Table S3
using a patterned array of 10610 droplets (i.e., n = 100 droplets)

for different cell loading concentrations. First, randomness of

process was verified by three variables, number of droplets (n),

tolerance (e), and confidence level (12a) using eq. 4.1. Following

the LLN, minimum sample size was estimated to be 100 droplets

for 90.0% confidence level with 15.0% tolerance. This sampling

volume of a droplet represented 0.76% of the total volume of the

ejection reservoir (0.1 ml). Random processes have different PDFs

in accordance with their parameters, i.e., number of droplets that

contain cells (Xd), number of cells in a droplet (Xc), number of

target cells per droplet (Xt), and the number of droplets that

contain single target cells (Xs). These random variables are

represented by two PDFs to statistically model the cell encapsu-

lation process, i.e., binomial and Poisson distributions. We

investigated probability values and parameters, l, for each case

with respect to the cell loading concentrations, cell volume

fraction, and percentage of target cells. In the case of simple

random sampling (SRS) process, statistical characteristics of a

relatively small sampling volume could represent the characteris-

tics of a large population based on CLT. In our experiments, the

target cell fraction (F%) shows same concentration as the reservoir

concentration for 10.0% to 50.0% at 1.06105 cells/ml concen-

tration (Copt) under conditions of 90.0% confidence level and

15.0% tolerance.

Results

For cell encapsulation model, 90% confidence level, (12a), and

15% tolerance, e, for lowest probability (p = 0.6) were used to

determine the number of ejected droplets encapsulating cells. LLN

was shown by investigating the PDF shape with 1.06105 cells/ml

to 2.06105 cells/ml cell loading concentrations. As the sampling

number of random variable, Xd, increases from n = 10 to 100, the

shape of its PDF, which actually is a binomial PDF, gets closer to a

normal distribution as indicated in Fig. 2. Experimental results

showed that the probability of cell encapsulation in droplets was

P(Xd = 1) = 58.3% and 87.3% for the cell loading concentrations

of 1.06105 cells/ml to 2.06105 cells/ml, respectively. The PDF

curve shows that the results follow normal PDF which has

58.363.8% for average and standard deviation with a 10%

maximum probability of cell encapsulation at 1.06105 cells/ml

concentration (Fig. 2a). As sampling number increases, high cell

concentration, 2.06105 cells/ml, also follows normal distribution

(Fig. 2b). Average probabilities for different cell loading

concentrations range from p = 0.87 to 0.58, which require 50 to

108 sampled droplets. Following these results, the sampling

number, n = 100 droplets (selected as a 10610 droplet array from

the entire set of printed droplets), seems to be sufficient for the

droplet based cell encapsulation process to follow approximately a

normal distribution. The array size was also suitable based on the

field of view of the detection equipment such as a microscope or a

lensless imaging system, (i.e., 10610 array of droplets for the

allowable field of view for imaging with CCD systems,

30 mm640 mm size). Using 100 instead of 107 suffices for an

approximation to normal distribution as presented in Figure 2.

The formula in (eq. 3.2) was utilized to calculate the fitted PDF

curves using MATLABH (Version R2010a, The MathWorks, Inc,

MA). Fig. 3a, b shows the experimental results and approximat-

ing normal curves for the PDFs of Binomial process. In fact, we

plot the discrete PDF functions together with an approximating

continuous curve (treating the discrete variables as if they were

continuous) for better visualization throughout the article. To

fulfill the condition for a large sampling set, we tested n = 100

droplets as described earlier in Section 2. Our experimental

results followed the binomial distribution when the number of

droplets that contain cells ranged from 1.06105 cells/ml to

2.06105 cells/ml as shown in Fig. 3a. Following the binomial

distribution model, for the cell loading concentrations 0.56105,

1.06105, 1.56105, and 2.06105 cells/ml, the probabilities of cell

encapsulation were 27.1%, 58.3%, 76.8%, and 87.3%, respec-

tively. These probability values are estimated from the means of

the empirical PDFs shown in Fig. 3b.

In the random process, the physical cell encapsulation process is

affected by the ejection mechanism and cell loading concentra-

tions. In Fig. 3c, the relationship between cell encapsulation

probability and volume fraction was shown as a function of cell

concentration. The cell encapsulation probabilities showed

exponential increase as cell concentration increases (Table S4).

We observed that the binomial distribution fits our experimental

results (Fig. 3). At a cell concentration of 2.56105 cells/ml,

probability of cell encapsulation was as high as 98.0%. This result

Statistical Modeling of Single Cell Encapsulation
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represented that small cell volume to droplet volume ratio was

needed to encapsulate cells within a large media droplet volume.

For 100% cell encapsulation probability, minimum droplet

volume and required cell concentration was calculated as 30.8

picoliter (pl) and 32.56106 cells/ml by the following equation:

Vdrop~
4
3

pr3

0:017

����
r~10um

~30:8pl ð3:3Þ

Therefore, at volume ratio value of 1.7% (i.e., 0.017) the droplet

generation system encapsulates cells with a minimum droplet

volume of 30.8 pl. This volume fraction corresponds to maximum

cell loading concentration of 32.56106 cells/ml with a droplet

volume of 7.7 nanoliter (nl). Exponential regression curves fit the

experimental results (the adjusted R2 value is 0.995). The

coefficients of exponential regression are a = 131 and b = 0.558

as shown in Fig. 3c. These results indicate that cells get

encapsulated in droplets with a higher probability at 2.06105

cells/ml than 1.06105 cells/ml. However, the cell concentration of

1.06105 cells/ml showed higher probability of ‘‘a single cell per

droplet’’ than that of 2.06105 cells/ml. Since only volume fraction

of 1.7% is required for encapsulating a cell with over 98%

probability, high cell concentrations might have lower probability

for single cell encapsulation compared to low cell concentrations.

The low cell concentration and cell volume fraction can be

represented with a Poisson distribution for encapsulation of ‘‘a

single cell’’ in a droplet as in (eq. 3.4).

Fig. 4 shows the PDF of the number of cells in a droplet,

P(Xc = k). In the case of droplets containing a single cell, the

Poisson distribution matches the experimental results as the

occurrence of ‘‘single cell encapsulation’’ becomes rare. That is,

the number of droplets containing cells can be modeled as a

binomial process, and the same holds for the number of droplets

that have single target cells. However, the latter seems to be closer

to a Poisson distribution, since the probability of success (i.e.,

probability of a droplet having a single target cell) is low and the

number of droplets is large. Moreover, the results showed the same

probability distribution regardless of target cell concentrations for

10% (Fig. 4a) and 50% (Fig. 4b) target cell mixture with

ntest = 100 droplets (0.76 ml total sub-sampling volume, single

droplet volume is 7.6 nl). Experimental results and modeled values

of Poisson distribution parameters match with 62.0% error from

10.0% to 50.0% cell loading concentration at 1.06105 cells/ml.

In Fig. 4, the PDF curve for each experiment is calculated by

using (eq. 3.5) using the Poisson approximation to binomial

distribution. This is also plotted as a continuous random variable

for convenience in visualization. At lower cell concentrations, say

0.56105 cells/ml, we observed Poisson distribution, since the

probability for encapsulating cells in a droplet is very low. The

other distributions for the concentrations are closer to the binomial

distribution than Poisson distribution due to higher cell concen-

tration and higher cell encapsulation probability. Following the

experimental results and the statistical model as shown in Fig. 4,

Pexperiment and PPoisson model, 1.06105 cells/ml was indicated as an

optimal concentration to encapsulate a single cell in a droplet for

our cell printing platform, since it has the highest single cell

encapsulation probability. Even though, 1.56105 and 2.06105

cells/ml cell concentration show higher cell encapsulation

probability as shown in Fig. 3, highest probability for single cell

encapsulation at 1.06105 cells/ml corresponding to 1.0% of

volume fraction. The highest probability estimates are obtained

from the peak points in each PDF, which gives highest probability

for Xc = 1.

As for the case of encapsulating a single target cell in a droplet

from a heterogeneous cell mixture, Fig. 5a–d shows PDFs, P(Xt),

for heterogeneous cell mixture with different cell loading

concentrations from 0.56105 cells/ml to 2.06105 cells/ml. The

shape of Poisson distributions were determined based on

experimental results. Binomial distributions and Poisson distribu-

tion for different cell loading concentrations were plotted in both

the discrete space and continuous random variable space. As

shown in Fig. 5, each PDF resembles a Poisson distribution as the

percentage of target cells and homogeneity decreases in cell

mixtures.

For the overall process PDF for a single target cell encapsulation

as in (eq. 3.6), Fig. 6 shows PDFs for the random variable, Xs, and

conditional PDF for selected cases of 1.06105 cells/ml (Fig. 6a)

and 10% target cell mixture (Fig. 6b). The combined PDF is

Figure 2. LLN (Law of large numbers) for different sampling numbers from n = 10 to 100 was shown according to cell loading
concentrations (a) 1.06105 cells/ml and (b) 2.06105 cells/ml. Probabilities of cell encapsulation in droplets are P(Xd = 1) = 58.3% and 87.3%,
respectively. As number of droplets increase, high cell concentration, 26105 cells/ml, also follows normal distribution.
doi:10.1371/journal.pone.0021580.g002
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similar to Poisson distribution, since the overall probability of

single target cell encapsulation (considering empty droplets) is also

low. The error in the fit of the modeled Poisson PDFs is within

5%, when the experimental results are compared using specific

parameter values of m, s, and p.

Based on the suggested model on (eq. 3.6), the number of

homogeneous droplets was modeled using the Poisson distribution.

The single target cell encapsulation process in a droplet can be

modeled following two control parameters: cell loading concen-

tration and percent mixture of target cell. Average number of cells,

l, for four different cell loading concentrations and target cell

concentrations were determined as shown in Table S2. As cell

loading density increases, target cell concentration, l values

increase, lmax = 0.95 and lmin = 0.03. Based on these experimen-

tal and analysis results, statistical models can be determined based

on l values, e.g., l= 0.05 for 1.06105 cells/ml with 10% target

cell mixture.

Discussion

For certain applications, for instance in tissue engineering and/

or high throughput testing [17,30,36], patterning cells is also an

important step that needs to follow the cell sorting step in

microfluidic systems. These systems will still require an additional

step for sorted cells to be separated to access individual target cells

and for patterning. The droplet based encapsulation approach

offers the advantage to sort and spatially pattern target cells at

specific predetermined locations simultaneously compared to other

approaches such as microfluidics, which sort and place cells

separately or use presorted cells. The droplet based system can be

advantageous, since it has fewer handling steps, which can be

important when dealing with various cell types. Hence, the

methodology that we are offering is unique in the sense that it can

work with both sorted and non-sorted cells depending on the

application. Further, drop-on-demand encapsulation process is

suitable for cell sorting and encapsulation simultaneously. In case

of a heterogeneous sample, microfluidic approach may require

that each target cell should be tracked during cell sorting process

and be patterned through an additional process step. Along with

the cell sorting process, we introduced statistical modeling and

patterned droplet arrays which are placed onto a surface with

spatial control using a drop-on-demand cell encapsulation system.

When multiple kinds of cells are present in a heterogeneous

sample, the statistical approach would efficiently select target cells.

The encapsulation approach does not require individual tracking

of cells as compared to the microfluidic approaches, where cells

flow in channels for sorting. The direct encapsulation from the

heterogeneous solution could offer to keep the system complexity

low.

When performing cell encapsulation studies, commonly ob-

served experimental conditions in cell culture needs to be taken

into account, such as the aggregation and settling of cells in the

suspension form. In our studies, cell encapsulating droplet

generation took place within minutes after the cell suspension

Figure 4. Probability distribution functions for the number of cells per droplet, Xc. In the case of droplets containing a single cell, the
Poisson distribution agrees with the experimental results since the probability becomes small. Experimental results and modeled values as Poisson
distribution for single cell encapsulation process agrees with 62% error at 1.06105 cells/ml (np has a moderate size, l= 1.0 for n = 10 cells in a
droplet) for (a) 10% and (b) 50% target cell mixture, ntest = 100 droplets. The maximum probability and PDF is not affected by cell loading
concentrations. The curves are generated using the Poisson distribution instead of the binomial distribution in continuous random variable space
(l=m= np, s= npq = l(12l/n)). In spite of the fact that 1.5 and 2.06105 cells/ml cell concentration show higher cell encapsulation probability as
shown in Figure 3, highest probability for single cell encapsulation is achieved at the specific cell concentration of 1.06105 cells/ml corresponding to
1.0% of volume fraction. The result is obtained from the peak points of each PDF, which gives highest probability of Xc = 1.
doi:10.1371/journal.pone.0021580.g004

Figure 3. Probability distribution functions of Bernoulli’s random variable, Xd. (a) Binomial distribution functions (n Bernoulli trials for
discrete random space) are shown with fitted PDF curves. The mean values of modeled binomial distribution (b) 27.1%, 58.3%, 76.8%, and 87.3% for
probability of cell encapsulation at cell loading concentrations of 0.56105, 1.06105, 1.56105, and 2.06105 cells/ml, respectively (ntest = 100 droplets).
Exponential regression curves fit the experimental results (coefficients of exponential regression: a = 131, b = 0.558, R2 = 0.995). (c) Cell encapsulation
probability and volume fraction (which is the ratio of cell volume divided by droplet volume, 7.7 nl) are shown as a function of cell concentrations. At
cell concentration 2.56105 cells/ml, probability of cell encapsulation was 98.0% and the volume fraction was 1.7% (which represent the cell loading
concentration and the minimum droplet volume to encapsulate a single target cell with the proposed mechanical valve system, respectively). In
summary, 1.7% cell volume fraction is the optimal value to achieve a very high cell encapsulation probability.
doi:10.1371/journal.pone.0021580.g003
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was prepared. Therefore, cell settling or aggregation of the cells in

the reservoir was not considered to have a significant effect on the

results. Various mixing methods, such as magnetic stirring, can be

used to prevent cell aggregation and settling for experiments

lasting longer durations. On the other hand, in our earlier work,

we have shown that different fluid types with different rheological

properties can be used to generate droplets and encapsulate cells

[2,8,37,38]. These studies have indicated that the system presented

here can produce uniform sized droplets with high repeatability

for a wide range of viscosity values with different cell concentra-

tions, including non-Newtonian fluids.

Encapsulation of a few to many cells in micro-scale droplets has

been investigated for applications in tissue engineering, in which

cell-encapsulating hydrogels can be used as building blocks for

generating organized tissue structures. In these studies, the control

over the number of cells in hydrogel building blocks (e.g.,

microscale droplets) is essential, where the number of cells per

building block determines the overall cell density in the resulting

tissues, and hence the structural and functional outcome [39].

Therefore, for applications in tissue engineering, it is critical to

achieve controllable cell density in small volume hydrogel droplets

for achieving reproducible and effective results.

Cell clusters (e.g., pancreatic islets) are currently an important

research area, which has the potential to offer alternative

treatments for diseases such as, Type-1 diabetes [40]. Cell clusters

can be considered as small organs, which are composed of multiple

cell types in a complex three dimensional organization. Encapsu-

lation of multiple cells, multiple cell types and cell clusters in

droplets with a deterministic approach would present unique

challenges, which warrant further investigation. It should be noted

that many cell types depend on supporting populations of other

cells and cell types to survive. Therefore, a detailed investigation

on encapsulation of multiple cell types that can serve as side

populations is needed. The present methods and models in this

manuscript can be modified to account for encapsulation of

multiple cell types, which would support applications where

supporting cell populations are important.

The presented drop-on-demand approach for single cell sorting

has a trade-off from a deterministic cell encapsulation aspect

compared to the microfluidic cell encapsulation approaches. For

single cell encapsulation, microfluidic method provides a more

deterministic method and better control over cell encapsulation.

However, as the heterogeneity of sample increases, the types of

cells that need to be tracked in the sample also increases leading to

Figure 5. Probability distribution functions for encapsulation of target cells from (a–d) 0.56105 cells/ml to 2.06105 cells/ml cell
concentrations, P(Xt). The PDFs are based on experimental results, Poisson distribution, and binomial distribution treating the variables as
continuous (e.g., it is not possible to have 0.1 cells, but we estimate the cell encapsulation probability for this value), for cell loading concentration (a)
0.56105 cells/ml, (b) 1.06105 cells/ml, (c) 1.56105 cells/ml, (d) 2.06105 cells/ml.
doi:10.1371/journal.pone.0021580.g005

Statistical Modeling of Single Cell Encapsulation

PLoS ONE | www.plosone.org 8 July 2011 | Volume 6 | Issue 7 | e21580



incline in complexity of microfluidic systems due to more complex

peripheral setups and high-end computerized controls [41,42].

The deterministic microfluidic approach offers an efficient system

to handle single to few cells. Further, microfluidic approach can be

convenient in case an integrated on-chip experiment requires

further cell handling steps post-sorting such as on-chip polymerase

chain reactions (PCR). Finally, throughput of drop-on-demand

sorting depends on the parallel printing setup and the wide field of

view imaging. On the other hand, the drop-on-demand cell

encapsulation approach here offers the benefit of fewer handling

steps to sort and pattern cells, where cells might be affected by the

conditions in the physical environment (e.g., stem cells and

oocytes). Further, by characterizing the performance of the system

statistically, the results can be repeatable and controlled such that

the system would be used as a biotechnological tool to separate

cells for specific applications, where minimal cell handing could be

an important issue. For instance, the importance of cell

microenvironment on cellular function has been demonstrated

[12,13,43,44,45,46]. This also points to the direction to minimize

handling steps and handling time for live cells. Another challenge

in microfluidic cell encapsulation is direct accessibility to cells. In

microfluidic systems, cells are located in closed channels, which

might make them harder to access directly. There is a need for an

additional droplet placement step, especially when spatial

patterning is needed to directly access cells. By the encapsulation

approach that we present here, target cells can directly be accessed

in patterned droplets without going through additional processes.

We investigated the cell encapsulation process in microdroplets.

We modeled the encapsulation process of a mechanical valve

system that randomly encapsulates target cells from a heteroge-

neous cell suspension. Using four random variables and corre-

sponding probability distribution functions (PDFs), the cell

encapsulation process was described and used to estimate process

characteristics such as mean (m), variance (s), and Poisson

distribution parameter (l) for different cell concentrations and

target cell mixtures. These models exhibited Poisson distributions

with 16 different values of a parameter as shown in Fig. 5 and

Fig. 6. The single target cell encapsulation process also followed

Poisson distribution and matched with 90.0% confidence level and

15.0% tolerance to experimental results. These results show

droplet ejector system can be used to encapsulate single target cells

at concentrations as low as 8.0% to 9.0% by using a patterned

array of 10610 droplets. If the size of droplet array follows law of

large numbers (LLN) as a sampling set, then the statistical

information of entire sample set for cell encapsulation can be

determined based on central limit theorem (CLT). These results

were demonstrated under the conditions of simple random

sampling (SRS).

In conclusion, statistical and stochastic modeling proves to be a

powerful and promising tool to determine the conditions for single

target cell encapsulation. In this article, we have theoretically

analyzed the encapsulation of a single target cell in microdroplets

from heterogeneous cell mixtures and supported our theoretical

results with experimental data. This analysis explains the statistical

dependence of encapsulation of single cells in droplets.

Supporting Information

Supporting Information S1

(DOC)

Figure S1 Image and illustration of a drop-on-demand
cell encapsulation system. (a) Image of the setup. A

computerized xyz stage was synchronized with a pulse controller,

LabviewTM. The automated stage positioned the substrate with

5 mm spatial resolution. A 106magnifying camera permitted in-

situ imaging of the droplets. (b) Schematic of droplet ejector

showed cells flowing into the valve driven by a controlled air

pressure pulse. A heterogeneous sample, mixture of cells and

media solution, was loaded into a reservoir. Each droplet was

placed at a predetermined position (10610 droplet array).

(TIF)

Table S1 Abbreviations and descriptions for statistical
modeling of single target cell encapsulation.
(DOC)

Table S2 Random variables in our data set and
representative meanings of each variable for random
cell encapsulation process. Three different random variables

Figure 6. The plot of single cell encapsulation probability versus number of target cells per droplet (a), and percentage of target
cells in a reservoir (b) PDFs for a single target cell encapsulation, P(Xs) were shown with combined PDFs for selected cases: (a)
Poisson distribution for 1.06105 cells/ml cell concentration for four different target cell concentrations, and (b) cell encapsulation
probability compared with experimental results from 10% to 50% target cell mixture. Modeled PDFs showed 5% error compared to the
experimental results using specific parameters, m, s, and p.
doi:10.1371/journal.pone.0021580.g006
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(i.e., Xd, Xc, and Xt) were defined in discrete independent domain

and one dependent variable (i.e., Xs) was defined by a combination

of independent variables for overall process efficiency. Three

variables were used to represent percentage of empty droplets,

effect of number of cells in droplets as a function of loading cell

concentrations, and target cell concentrations, respectively.

(DOC)

Table S3 Values of Poisson coefficient, l, for four
different percentage of target cell mixture and four
different cell loading concentrations at reservoir. Prob-

ability of encapsulating a single target cell in a droplet was

presented by probability distribution function, P(Xs). The number

of homogeneous droplets was modeled using Poisson distribution

in a random variable space, i.e., number of target cells. The model

was verified using a coefficient, l, and experimental results.

Average number of cells, l, for four different cell loading

concentrations and target cell concentrations were determined.

As cell loading density increases, target cell concentration, l values

increase, from lmin = 0.03 to lmax = 0.95. Based on these

experimental and analysis results, statistical models can be

determined based on l values, e.g., l= 0.10- for 1.06105 cells/

ml with 10% target cell mixture.

(DOC)

Table S4 Statistical modeling results for drop-on-de-
mand single target cell encapsulation. (a) Randomness of

process was verified by three variables, number of samples (n),

tolerance (e), and confidence level (12a) using an inequality(**).

Following the law of large numbers (LLN), minimum sample

number was determined as 100 droplets for 90.0% confidence

level and 15.0% tolerance. This sampling volume of a droplet

represented (0.76 ml = 1061067.6 nl) 0.76% of the total volume

of the ejection reservoir (0.1 mL). (b) Random processes have

different PDFs in accordance with their parameters, i.e., droplets

that contain cells (Xd), number of cells in a droplet (Xc), number of

target cells per droplet (Xt), and droplets that contain single target

cells (Xs). These four random variables are represented by

binomial, Poisson, and normal distributions to statistically model

the cell encapsulation process. We investigated probability values

and parameters, l, for each case with respect to the cell loading

concentration, cell volume fraction, and percentage of target cells.

(c) In the case of SRS process, statistical characteristics of a

random sampling volume can represent the characteristics of a

large population, and the required number of droplets (i.e., sample

size) is based on the CLT. In our experiments, the target cell

fraction (F%) shows same concentration as the reservoir

concentration for 10.0% to 50.0% at 1.06105 cells/ml concen-

tration (Copt) under conditions of 90.0% confidence level and

15.0% tolerance.

(DOC)
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