446 research outputs found

    Constraints in Non-Boolean Contexts

    Get PDF
    In high-level constraint modelling languages, constraints can occur in non-Boolean contexts: implicitly, in the form of partial functions, or more explicitly, in the form of constraints on local variables in non-Boolean expressions. Specifications using these facilities are often more succinct. However, these specifications are typically executed on solvers that only support questions of the form of existentially quantified conjunctions of constraints. We show how we can translate expressions with constraints appearing in non-Boolean contexts into conjunctions of ordinary constraints. The translation is clearly structured into constrained type elimination, local variable lifting and partial function elimination. We explain our approach in the context of the modelling language Zinc. An implementation of it is an integral part of our Zinc compiler

    Reduction of anion reversal potential subverts the inhibitory control of firing rate in spinal lamina I neurons: towards a biophysical basis for neuropathic pain

    Get PDF
    BACKGROUND: Reduction of the transmembrane chloride gradient in spinal lamina I neurons contributes to the cellular hyperexcitability producing allodynia and hyperalgesia after peripheral nerve injury. The resultant decrease in anion reversal potential (i.e. shift in E(anion )to less negative potentials) reduces glycine/GABA(A )receptor-mediated hyperpolarization, but the large increase in membrane conductance caused by inhibitory input can nonetheless shunt concurrent excitatory input. Without knowing the relative contribution of hyperpolarization and shunting to inhibition's modulation of firing rate, it is difficult to predict how much net disinhibition results from reduction of E(anion). We therefore used a biophysically accurate lamina I neuron model to investigate quantitatively how changes in E(anion )affect firing rate modulation. RESULTS: Simulations reveal that even a small reduction of E(anion )compromises inhibitory control of firing rate because reduction of E(anion )not only decreases glycine/GABA(A )receptor-mediated hyperpolarization, but can also indirectly compromise the capacity of shunting to reduce spiking. The latter effect occurs because shunting-mediated modulation of firing rate depends on a competition between two biophysical phenomena: shunting reduces depolarization, which translates into reduced spiking, but shunting also shortens the membrane time constant, which translates into faster membrane charging and increased spiking; the latter effect predominates when average depolarization is suprathreshold. Disinhibition therefore occurs as both hyperpolarization- and shunting-mediated modulation of firing rate are subverted by reduction of E(anion). Small reductions may be compensated for by increased glycine/GABA(A )receptor-mediated input, but the system decompensates (i.e. compensation fails) as reduction of E(anion )exceeds a critical value. Hyperexcitability necessarily develops once disinhibition becomes incompensable. Furthermore, compensation by increased glycine/GABA(A )receptor-mediated input introduces instability into the system, rendering it increasingly prone to abrupt decompensation and even paradoxical excitation. CONCLUSION: Reduction of E(anion )dramatically compromises the inhibitory control of firing rate and, if compensation fails, is likely to contribute to the allodynia and hyperalgesia associated with neuropathic pain. These data help explain the relative intractability of neuropathic pain and illustrate how it is important to choose therapies not only based on disease mechanism, but based on quantitative understanding of that mechanism

    Ant biodiversity conservation in Belgian calcareous grasslands: active management is vital

    Get PDF
    A list of ant species collected in eight calcareous grasslands in the Viroin valley (Viroinval, Belgium) is presented. Thirty species were identified, including Temnothorax albipennis, for the first time recorded in Belgium. Ant community composition and chorology of some ant species are discussed. Recommendations on how to use ant community composition and nest densities of several ant species to evaluate management in calcareous grasslands are given. It appears that in locations with encroachment of tall grasses (especially Brachypodium pinnatum) and spontaneous afforestation, due to a complete lack of or to inadequate management, most of the often rare xerophilic ant species are replaced by mesophilic, rather common species

    Using heart rate profiles during sleep as a biomarker of depression

    Get PDF
    Background: Abnormalities in heart rate during sleep linked to impaired neuro-cardiac modulation may provide new information about physiological sleep signatures of depression. This study assessed the validity of an algorithm using patterns of heart rate changes during sleep to discriminate between individuals with depression and healthy controls. Methods: A heart rate profiling algorithm was modeled using machine-learning based on 1203 polysomnograms from individuals with depression referred to a sleep clinic for the assessment of sleep abnormalities, including insomnia, excessive daytime fatigue, and sleep-related breathing disturbances (n = 664) and mentally healthy controls (n = 529). The final algorithm was tested on a distinct sample (n = 174) to categorize each individual as depressed or not depressed. The resulting categorizations were compared to medical record diagnoses. Results: The algorithm had an overall classification accuracy of 79.9% [sensitivity: 82.8, 95% CI (0.73–0.89), specificity: 77.0, 95% CI (0.67–0.85)]. The algorithm remained highly sensitive across subgroups stratified by age, sex, depression severity, comorbid psychiatric illness, cardiovascular disease, and smoking status. Conclusions: Sleep-derived heart rate patterns could act as an objective biomarker of depression, at least when it cooccurs with sleep disturbances, and may serve as a complimentary objective diagnostic tool. These findings highlight the extent to which some autonomic functions are im

    On the Portability of Prolog Applications

    Get PDF
    The non-portability of Prolog programs is widely considered one of the main problems facing Prolog programmers. Although since 1995, the core of the language is covered by the ISO standard 13211-1, this standard has not been sufficient to support large Prolog applications. As an approach to address this problem, since 2007, YAP and SWI-Prolog have established a basic compatibility framework. The aim of the framework is running the same code on Edinburgh-based Prolog systems rather than having to migrate an application. This article describes the implementation and evaluates this framework by studying how it can be used on a number of libraries and an important application. © 2011 Springer-Verlag

    Differential chloride homeostasis in the spinal dorsal horn locally shapes synaptic metaplasticity and modality-specific sensitization

    Get PDF
    Inhibition in spinal nociceptive pathways is weaker and more labile in lamina I —where thermal input is primarily processed— than in lamina II that encodes predominantly high threshold mechanical input. This explains why noxious thermal input makes spinal circuits prone to catastrophic sensitization

    Adaptive Movement Compensation for In Vivo Imaging of Fast Cellular Dynamics within a Moving Tissue

    Get PDF
    In vivo non-linear optical microscopy has been essential to advance our knowledge of how intact biological systems work. It has been particularly enabling to decipher fast spatiotemporal cellular dynamics in neural networks. The power of the technique stems from its optical sectioning capability that in turn also limits its application to essentially immobile tissue. Only tissue not affected by movement or in which movement can be physically constrained can be imaged fast enough to conduct functional studies at high temporal resolution. Here, we show dynamic two-photon Ca2+ imaging in the spinal cord of a living rat at millisecond time scale, free of motion artifacts using an optical stabilization system. We describe a fast, non-contact adaptive movement compensation approach, applicable to rough and weakly reflective surfaces, allowing real-time functional imaging from intrinsically moving tissue in live animals. The strategy involves enslaving the position of the microscope objective to that of the tissue surface in real-time through optical monitoring and a closed feedback loop. The performance of the system allows for efficient image locking even in conditions of random or irregular movements

    Modelling the effects of calcium waves and oscillations on saliva secretion

    Get PDF
    An understanding of Ca2+Ca2+ signalling in saliva-secreting acinar cells is important, as Ca2+Ca2+ is the second messenger linking stimulation of cells to production of saliva. Ca2+Ca2+ signals affect secretion via the ion channels located both apically and basolaterally in the cell. By approximating Ca2+Ca2+ waves with periodic functions on the apical and basolateral membranes, we isolate individual wave properties and investigate them for their effect on fluid secretion in a mathematical model of the acinar cell. Mean Ca2+Ca2+ concentration is found to be the most significant property in signalling secretion. Wave speed was found to encode a range of secretion rates. Ca2+Ca2+ oscillation frequency and amplitude had little effect on fluid secretion
    • …
    corecore