126 research outputs found

    Controlling the Manifold of Polariton States Through Molecular Disorder

    Full text link
    Exciton polaritons, arising from the interaction of electronic transitions with confined electromagnetic fields, have emerged as a powerful tool to manipulate the properties of organic materials. However, standard experimental and theoretical approaches overlook the significant energetic disorder present in most materials now studied. Using the conjugated polymer P3HT as a model platform, we systematically tune the degree of energetic disorder and observe a corresponding redistribution of photonic character within the polariton manifold. Based on these subtle spectral features, we develop a more generalized approach to describe strong light-matter coupling in disordered systems that captures the key spectroscopic observables and provides a description of the rich manifold of states intermediate between bright and dark. Applied to a wide range of organic systems, our method challenges prevailing notions about ultrastrong coupling and whether it can be achieved with broad, disordered absorbers

    The influence of nitrate on microbial processes in oil industry production waters

    Get PDF
    Sulfide accumulation due to bacterial sulfate reduction is responsible for a number of serious problems in the oil industry. Among the strategies to control the activity of sulfate -reducing bacteria ( SRB ) is the use of nitrate, which can exhibit a variety of effects. We investigated the relevance of this approach to souring oil fields in Oklahoma and Alberta in which water flooding is used to enhance oil recovery. SRB and nitrate -reducing bacteria ( NRB ) were enumerated in produced waters from both oil fields. In the Oklahoma field, the rates of sulfate reduction ranged from 0.05 to 0.16 M S day À 1 at the wellheads, and an order of magnitude higher at the oil -water separator. Sulfide production was greatest in the water storage tanks in the Alberta field. Microbial counts alone did not accurately reflect the potential for microbial activities. The majority of the sulfide production appeared to occur after the oil was pumped aboveground, rather than in the reservoir. Laboratory experiments showed that adding 5 and 10 mM nitrate to produced waters from the Oklahoma and Alberta oil fields, respectively, decreased the sulfide content to negligible levels and increased the numbers of NRB. This work suggests that sulfate reduction control measures can be concentrated on aboveground facilities, which will decrease the amount of sulfide reinjected into reservoirs during the disposal of oil field production waters

    Inequalities in medicine use in Central Eastern Europe: an empirical investigation of socioeconomic determinants in eight countries

    Full text link

    Typology and distribution of small farms in Europe: Towards a better picture

    Get PDF
    The contribution of small farms to local food supply, food security and food sovereignty is widely acknowledged at a global level. In the particular case of Europe, they often are seen as an alternative to large and specialised farms. Assessing the real role of small farms has been limited by a lack of information, as small farms are frequently omitted from agricultural censuses and national statistics. It is also well acknowledged that small farms differ widely, and are distributed according to different spatial patterns across Europe, fulfilling different roles according to the agriculture and territorial characteristics of each region. This paper presents the result of a novel classification of small farms at NUTS-3 level in Europe, according to the relevance of small farms in the agricultural and territorial context of each region, and based on a typology of small farms considering different dimensions of farm size. The maps presented result from an extensive data collection and variables selected according to European wide expert judgement, analysed with advanced cluster procedures. The results provide a fine grained picture of the role of small farms at the regional level in Europe today, and are expected to support further data analysis and targeted policy intervention

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery
    corecore