8 research outputs found

    A new automated method versus continuous positive airway pressure method for measuring pressure-volume curves in patients with acute lung injury

    Get PDF
    Objective: To compare pressure-volume (P-V) curves obtained with the Galileo ventilator with those obtained with the CPAP method in patients with ALI or ARDS receiving mechanical ventilation. P-V curves were fitted to a sigmoidal equation with a mean R2 of 0.994 ± 0.003. Lower (LIP) and upper inflection (UIP), and deflation maximum curvature (PMC) points calculated from the fitted variables showed a good correlation between methods with high intraclass correlation coefficients. Bias and limits of agreement for LIP, UIP and PMC obtained with the two methods in the same patient were clinically acceptable.Comparar les curves pressió-volum (PV) realitzades amb el ventilador Galileo amb aquelles realitzades amb el mètode CPAP, en malalts amb LPA/SDRA tractats amb ventilació mecànica. Les curves PV vàren ésser ajustades a una equació sigmoidal, amb una R2 de 0.994 ± 0.003. Els punts d'inflexió inferior (PII), superior (PSI) i el punt de màxima curvatura de la curva espiratòria (PMC) calculats vàren mostrar una bona correlació entres els mètodes, amb coeficients de correlació intra-classe molt alts. El biaix i els límits d'acord per PII, PSI i PMC aconseguits amb els mètodes en el mateix malalt vàren ésser clínicament acceptables

    Operational evaluation of the earlobe arterialized blood collector in critically ill patients

    Get PDF
    The new Earlobe Arterialized Blood Collector (EABC®) is a minimally invasive prototype system able to perform capillary blood collection from the earlobe (EL) with minimal training and risk. This system could improve medical emergency management in extreme environments. Consequently, a prospective validation study was designed to evaluate operational performance of the EABC® in a cohort of critically ill patients. Arterialized capillary blood was sampled from the EL of 55 invasively ventilated patients using the EABC® following a validated procedure. Operational characteristics such as the number of cuts and cartridges required, sampling failure/success ratio, bleeding complications, storage requirements and other auxiliary aspects were recorded. Result turnaround laboratory times (TAT) were compared with published references. Blood collection was as easily performed on one earlobe as the other. Twenty-six minutes (mean 25.8; SD = 3.8) were required to obtain results, 15 min for patient preparation (mean 15.3; SD = 2.6) + 11 min for sampling and analysis (mean 11.4; SD = 2.1), which is similar to published hospital reference laboratory TAT. The average number of cartridges required was 1.3 (1-3; mode = 1) with the mean number of cut attempts being 1.2 (1-4; mode = 1). Problems/difficulties occurred in 59% of cases but were mainly attributed to patient's demographic characteristics, with only 10% attributable to the collector (superficial cut, blood leak, collector misalignment and obstructed vision). Haemostasis was quickly achieved with minimum complications. Storage of the complete sampling kit required a 300 × 300 × 300 mm box. Two 9-V batteries were used during the 2-year study period. The new EABC® system concept is safe, fast and easy to use. Observed problems/difficulties are easily amendable with certain design modifications. Definitive versions of the prototype have the potential for significant benefits for isolated and extreme environments in medicine

    Respiratory Mechanics in the Mechanically Ventilated Patient

    No full text
    corecore