2,201 research outputs found
The Infrared Jet In 3C66B
We present images of infrared emission from the radio jet in 3C66B. Data at
three wavelengths (4.5, 6.75 and 14.5 microns) were obtained using the Infrared
Space Observatory. The 6.75 micron image clearly shows an extension aligned
with the radio structure. The jet was also detected in the 14.5 micron image,
but not at 4.5 micron. The radio-infrared-optical spectrum of the jet can be
interpreted as synchrotron emission from a population of electrons with a
high-energy break of 4e11 eV. We place upper limits on the IR flux from the
radio counter-jet. A symmetrical, relativistically beamed twin-jet structure is
consistent with our results if the jets consist of multiple components.Comment: 7 pages, 4 figure
HEAO 1 measurements of the galactic ridge
The HEAO A2 experiment data was systematically searched for unresolved galactic disc emission. Although there were suggestions of non-uniformities in the emission, the data were consistent with a disc of half-thickness 241 + 22 pc and surface emissivity (2-10 keV) at galactic radius R(kpc) of 2.2 10 to the minus 7th power exp(-R/3.5) erg/sq cm to the (-2)power/s (R 7.8 kpc). giving a luminosity of approximately 4.4 10 to the 37th power erg S to the (-1) power. If the model is extrapolated to radii less than 7.8 kpc, the unresolved disc emission is approximately 1.4 10 to the 38th power erg S to the (-1) power (2-10 keV) i.e., a few percent of the luminosity of the galaxy in resolved sources. the disc emission has a spectrum which is significantly softer than that of the high galactic latitude diffuse X-ray background and it is most probably of discrete source origin
Discovery of a Jet-Like Structure at the High Redshift QSO CXOMP J084128.3+131107
The Chandra Multiwavelength Project (ChaMP) has discovered a jet-like
structure associated with a newly recognized QSO at redshift z=1.866. The
system was 9.4 arcmin off-axis during an observation of 3C 207. Although
significantly distorted by the mirror PSF, we use both a raytrace and a nearby
bright point source to show that the X-ray image must arise from some
combination of point and extended sources, or else from a minimum of three
distinct point sources. We favor the former situation, as three unrelated
sources would have a small probability of occurring by chance in such a close
alignment. We show that interpretation as a jet emitting X-rays via inverse
Compton (IC) scattering on the cosmic microwave background (CMB) is plausible.
This would be a surprising and unique discovery of a radio-quiet QSO with an
X-ray jet, since we have obtained upper limits of 100 microJy on the QSO
emission at 8.46 GHz, and limits of 200 microJy for emission from the putative
jet.Comment: 12 pages including 4 figures. Accepted for publication by ApJ Letter
Variable X-ray spectra of BL Lac objects: HEAO-1 observations of PKS 0548-322 and 2A 1219+305
X-ray spectra for the BL Lac objects PKS 0548-322 and 2A 1219+305 measured with the HEAO-1 A2 detectors during pointing maneuvers on September 30, 1978 and May 31, 1978 respectively are presented. Both fit single power law components with low energy absorption. For 2A 1219+305, a thermal bremsstrahlung form gives an unacceptable fit. From a comparison with other statistically poorer observations taken at 6 month intervals while the satellite was in its normal scanning mode, it is found that the sources exhibit spectral variability. A summary of measurements of the 5 BL Lac objects detected with the A2 experiment is presented and it is concluded that X-ray spectral changes in this class of source are common. Their general X-ray spectral characteristics distinguish BL Lac objects from other classes of X-ray emitting active galactic nuclei. Analysis of their total spectra indicates that most of the energy is emitted in the 5 to 100 eV band
The magnetized medium around the radio galaxy B2 0755+37: an interaction with the intra-group gas
We explore the magneto-ionic environment of the isolated radio galaxy B2
0755+37 using detailed imaging of the distributions of Faraday rotation and
depolarization over the radio source from Very Large Array observations at
1385,1465 and 4860 MHz and new X-ray data from XMM-Newton. The Rotation Measure
(RM) distribution is complex, with evidence for anisotropic fluctuations in two
regions. The approaching lobe shows low and uniform RM in an unusual `stripe'
along an extension of the jet axis and a linear gradient transverse to this
axis over its Northern half. The leading edge of the receding lobe shows
arc-like RM structures with sign reversals. Elsewhere, the RM structures are
reasonably isotropic. The RM power spectra are well described by cut-off power
laws with slopes ranging from 2.1 to 3.2 in different sub-regions. The
corresponding magnetic-field autocorrelation lengths, where well-determined,
range from 0.25 to 1.4 kpc. It is likely that the fluctuations are mostly
produced by compressed gas and field around the leading edges of the lobes. We
identify areas of high depolarization around the jets and inner lobes. These
could be produced by dense gas immediately surrounding the radio emission
containing a magnetic field which is tangled on small scales. We also identify
four ways in which the well known depolarization (Faraday depth) asymmetry
between jetted and counter-jetted lobes of extended radio sources can be
modified by interactions with the surrounding medium.Comment: 16 pages, 13 figures, accepted for publication in MNRAS. Full
resolution paper available at: ftp://ftp.ira.inaf.it/pub/outgoing/guidetti/
Subjects: Cosmology and Extragalactic Astrophysics (astro-ph.CO
The non-monotonic shear-thinning flow of two strongly cohesive concentrated suspensions
The behaviour in simple shear of two concentrated and strongly cohesive
mineral suspensions showing highly non-monotonic flow curves is described. Two
rheometric test modes were employed, controlled stress and controlled
shear-rate. In controlled stress mode the materials showed runaway flow above a
yield stress, which, for one of the suspensions, varied substantially in value
and seemingly at random from one run to the next, such that the up flow-curve
appeared to be quite irreproducible. The down-curve was not though, as neither
was the curve obtained in controlled rate mode, which turned out to be
triple-valued in the region where runaway flow was seen in controlled rising
stress. For this first suspension, the total stress could be decomposed into
three parts to a good approximation: a viscous component proportional to a
plastic viscosity, a constant isostatic contribution, and a third shear-rate
dependent contribution associated with the particulate network which decreased
with increasing shear-rate raised to the -7/10th power. In the case of the
second suspension, the stress could be decomposed along similar lines, although
the strain-rate softening of the solid-phase stress was found to be logarithmic
and the irreducible isostatic stress was small. The flow curves are discussed
in the light of recent simulations and they conform to a very simple but
general rule for non-monotonic behaviour in cohesive suspensions and emulsions,
namely that it is caused by strain-rate softening of the solid phase stress.Comment: Revised and corrected version accepted by J. non-Newtonian Fluid
Mech., this version 24 pages, 9 Figs inc. graphical abstrac
A Chandra Survey of Quasar Jets: First Results
We present results from Chandra X-ray imaging and spectroscopy of a
flux-limited sample of flat spectrum radio-emitting quasars with jet-like
extended structure. Twelve of twenty quasar jets are detected in 5 ks ACIS-S
exposures. The quasars without X-ray jets are not significantly different from
those in the sample with detected jets except that the extended radio emission
is generally fainter. New radio maps are combined with the X-ray images in
order to elucidate the relation between radio and X-ray emission in spatially
resolved structures. We find a variety of morphologies, including long straight
jets and bends up to 90 degrees. All X-ray jets are one-sided although the
radio images used for source selection often show lobes opposite the X-ray
jets. The FR II X-ray jets can all be interpreted as inverse Compton scattering
of cosmic microwave background photons by electrons in large-scale relativistic
jets although deeper observations are required to test this interpretation in
detail. Applying this interpretation to the jets as a population, we find that
the jets would be aligned to within 30 degrees of the line of sight generally,
assuming that the bulk Lorentz factor of the jets is 10.Comment: 25 pages with 5 pages of color figures; accepted for publication in
the Astrophysical Journal Supplements; higher resolution jpeg images are
available at http://space.mit.edu/home/jonathan/jets
A Multi-Wavelength Study of the Jet, Lobes and Core of the Quasar PKS 2101-490
We present a detailed study of the X-ray, optical and radio emission from the
jet, lobes and core of the quasar PKS 2101-490 as revealed by new Chandra, HST
and ATCA images. We extract the radio to X-ray spectral energy distributions
from seven regions of the 13 arcsecond jet, and model the jet X-ray emission in
terms of Doppler beamed inverse Compton scattering of the cosmic microwave
background (IC/CMB) for a jet in a state of equipartition between particle and
magnetic field energy densities. This model implies that the jet remains highly
relativistic hundreds of kpc from the nucleus, with a bulk Lorentz factor Gamma
~ 6 and magnetic field of order 30 microGauss. We detect an apparent radiative
cooling break in the synchrotron spectrum of one of the jet knots, and are able
to interpret this in terms of a standard one-zone continuous injection model,
based on jet parameters derived from the IC/CMB model. However, we note
apparent substructure in the bright optical knot in one of the HST bands. We
confront the IC/CMB model with independent estimates of the jet power, and find
that the IC/CMB model jet power is consistent with the independent estimates,
provided that the minimum electron Lorentz factor gamma_min > 50, and the knots
are significantly longer than the jet width, as implied by de-projection of the
observed knot lengths.Comment: 16 pages, 10 figures, 6 table
The Brightest Cluster Galaxy in Abell 85: The Largest Core Known so far
We have found that the brightest cluster galaxy (BCG) in Abell~85, Holm 15A,
displays the largest core so far known. Its cusp radius, kpc (), is more than 18 times
larger than the mean for BCGs, and kpc larger than A2261-BCG, hitherto
the largest-cored BCG (Postman, Lauer, Donahue, et al. 2012) Holm 15A hosts the
luminous amorphous radio source 0039-095B and has the optical signature of a
LINER. Scaling laws indicate that this core could host a supermassive black
hole (SMBH) of mass . We
suggest that cores this large represent a relatively short phase in the
evolution of BCGs, whereas the masses of their associated SBMH might be set by
initial conditions.Comment: 14 pages, 3 figure, 2 tables, accepted for publication in ApJ Letters
on October 6th, 2014, replacement of previous manuscript submitted on May
30th, 2014 to astro-p
- …
