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ABSTRACT

We have systematically searched the HFtO A2 + experiment data for

+The HEAD A2 experiment is a collaborative effort led by E. Boldt of GSFC and

G. Garmire of CIT with collaborators at GSFC, CIT, JPL and UCB.

unresolved galactic disc emission. Although there are suggestions of

non-uniformities in the emission, our data are consistent with a disc of

half-thickness 241 t 22 pc and surface emissivity (2-10 keV) at galactic

radius R(kpc) of 2.2 10 -7 exp(-R/3.5) erg/cm2 /s (R N 7.8 kpc), giving a

luminosity of - 4.4 10 37 erg s-1 . If we extrapolate the model to radii less

than 7.8 kpc. the unresolved disc emission is - 1.4 10 38 erg s-1 (2-10 keV)

i.e. a few per cent of the luminosity of the galaxy in resolved sources. The

disc emission has a spectrum which is significantly softer than that of the

high galactic latitude diffuse X-ray background and it is most probably of

discrete source origin.



Subject headings: galaxies: Milky Wary - galaxies: structure -

X-rays: sources

l Also Dept. of Physics and Astronomy, Univ. of Maryland
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I. INTRODUCTION

The A2 proportional counter experiment on HEAD 1 was designed to be

particularly effective in searching for large scale features and anisotropies

in the unresolved 2-50 keV X-ray sky. The satellite mission, launched Aug.

1977, was scanning in nature and in 6 months the whole sky was covered in a

roughly uniform manner. We have isolated two unresolved galactic components

in the data. The most prominent large scale feature is a galactic latitude

dependence of the flux which can be seen at high latitudes, away from the

confusion of the sources in the galactic plane (Iwan et P. 1981). A similar

effect in the Ariel 5 data is reported by Warwick, Pye and Fabian (1980) and

in the Uhuru data by Protheroe, Wolfendale and Wdowczyk (1980), although we

believe it is likely that these authors modelled a composite of the two

components we have now isolated.

The subject of this paper is our second component, which was found in a

search for unresolved disc emission of a smaller scale height, such as would

be consistent with a few earlier reports of disc enhancements in isolated

directions. The first measurements, Cooke, Griffiths and Pounds (1969) and

Hudson, Peterson and Schwartz (1971), were undoubtedly ;ontaminated by now

resolved discrete sources (see e.g. Cooke and Pounds 1971). However, Bleach

et al. (1972) with a rocket-borne proportional counter experiment observed

between longitudes of 570 and 65°5, a direction in which the cross-section

along spiral arms is small (Simonson 1976), and, despite no reported discrete

sources along the line of sight, measured a significant 2-10 keV ridge

excess. This was confirmed by Wheaton (1976) who, with the OSO 7

scintillators, extended the spectrum to 40 keV. At t=240 0 he reports a flux

which is a factor of 2.5 lower than at t = 550 . At t = 1400 he did not achieve a

positive ridge detection. We detect ridge emission in an ensemble of



directions and present here the measurements and discuss likely

L,	 such a flux.

II. OBSERVATIONS

In HEAO 1's normal scanning mode the A2 experiment (Rothschild et a).

1979), with its look axis orthogonal to the satellite spin axis, described

great sky circles at the rate of about one per 30 minutes. The spin axis

pointed towards the sun, and thus moved by roughly a degree each day. In six

months the whole sky wa:. panned. The angle, e, which a scan in ecliptic

latitude made with the galactic plane varied gradually with spin axis

direction. When the ecliptic scans cut the galactic plane at longitudes close

to i=1050 and t=2850 the angle was near to 900 and -o these directions are

particularly well suited for searching for galactic disc emission. The

smallest angle, which occurred when the galactic center and anti-center were

in view, is - 300.

The data presented here are from our first complete sky coverage. We

selected 120 directions in the galactic disc at zero latitude, beginning at 3

degrees longitude and incrementing by 3 degrees thereafter. For each

direction in turn, data within 12.5 degrees along the scans were binned in

1/4-degree intervals and we constructed an average of scans taken over roughly

four days. Longer portions of scan were not taken so that the expected flux

variation over the scan due to the large scale galactic component, mentioned

in the introduction, would be less than 10`x.

The intention was to search for a ridge with a projected extent in the

scan direction of c 5 degrees half-angle. We used only the two detectors with

a field of view of 1.5 degrees FWHM along the scan direction and 3 degrees

FWHM perpendicular to the scan. The detector layer combination chosen for

this analysis is defined by Marshall et al. (1979) and gives rates in units of
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R15 counts/sec, coverinq the 2-50 keV energy range. Combined internal

detector background and extragalactic diffuse sky flux give roughly 6-7.5 R15

counts/sec.

a. X-ray Ridge Intensity

We rejected those of our 120 25-degree scan averages containing

either more than three known sources or any single source greater than 20

counts/sec. This eliminated scans centered around III < 500 , the Vela and
Cygnus directions, among several others. Directions within 50 0 of the

galactic anticenter were also excluded since values for a are smallest here

and we found we were not sensitive to the flux variations consistent with the

results in other directions. We fit each ith averaged scan (from here on

referred to as ith scan), of the 23 remaining, to a constant background and as

many point sources, to a maximum of three, as required. We computed

chi-squared for the best fit. We then assumed the galactic disc to be a

diffuse X-ray emitter and tested for improvement in chi-squared.

The flux in the jth bin (of 100) of the ith scan (of 23) is given by:

I	
- BI + IJ ( jQij (r,e) ff ij (r,e,r1 ) dr + BD gij (a,r2)) 

de dmij 

(1) B I is the detector internal background flux which is constant but, due to

an experiment reconfiguration during the first sky scan, is one of two values

differing by about 40%. B I is roughly 25-45% of the total flux.

(2) a is the angle to the detector in the scan direction and takes values

from zero to t 1°5.

(3) # is the angle to the detector perpendicular to the scan direction and

takes values from zero to t 30.

(4) Qi j (r,e), the emissivity of the unresolved disc emission at distance r,

g:

M:
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is modified by the function f which accounts for flux absorption by neutral

hydrogen along the line of sight. For spectral index r 1 = 2.8 (see next

section), we find f(r,e) - exp (-1.4 10 -23 NH(r,e)).

We adopt a simple model for the gas in the galaxy, since more complexity is

not warranted by the statistical accuracy of our data. We neglect ftlecul.r

hydrogen, since it is mostly confined to radii < 8 kpc and all our 23

directions are at longitudes > 500 . We assume that the gas uniformly fills a

disc of half-thickness 120 pc (Baker and Burton 1915) and th , " NH = 0.35r

atoms cm-2.

(5) Bp is the isotropic background intensity, modified by the function q to

account for absorption. The background is represented by a 40 keV thermal

bremsstrahlung spectrum (Marshall et al. 1980), for which absorption by

neutral hydroaen is given by:

g(r,e) - exp (-6.3 10 -24 NH(r,9))

NH is modelled as above. Since the scans cross the galactic plane at

relatively large values of 	 we neglect the small dependence of Q, f and g

on 0.

As the simplest model, we first adopted a uniformly emitting flat slab of

radius Rmax and half-thickness Z 1/2 max-

Q ij (r,o) = Q(R,Z1/2)

= constant, q  if R < Rmax i

Z < Z 1/2 max i

= 0 otherwise.

Our sensitivity to Rmax is small since our information about emission at
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distances > 8 kpc from the sun is limited. We adopt Rmax = 16 kpc and a

galactic center to sun distance of 10 kpc.

We tested each of our 23 directions in turn and found improvement in

chi-squared, from the fits without a ridge, in 14 of the 23 directions (Fig.

1). Upper limits to q i were found for the other 9. The values of q i (Fig. 2)

are clearly inconsistent with the hypothesis that q i = constant. Z 1/2 max i =

constant = 319 pc is an acceptable fit, implying that our sensitivity to the

scale height parameter is lower.

As a second model we adopted a radial emissivity decrease:

Q ij (r,e) = q i exp(-R/R i ) if Z < Z 1/2 max i
= 0 otherwise.

We tested our 23 directions for consistency with R i = constant, q i =

constant. Our best fit was R j = 3.5 kpc. The best value for zmax was now

lower since this model places the flux contributions closer to the sun on

average. We found Z 1/2 max i = constant = 241 pc. Details of the fits in the

23 directions are given in Table 1. Table 2 summarizes the results for the

two models tested. We notice that the radial-dependent emissivity model gives

a greatly improved chi-squared over the case of uniform emissivity. The

chi-squared is acceptable when an 18: error to the model dependent galactic

absorption correction to the diffuse background counts is added to the

statistical errors in the count rates. Figure 3 shows the radial dependence

in the ranee we have investigated and, for comparison, distributions of total

mass, neutral hy:rooen and > 100 MeV gamma-rays, which each fall off in a

similar manner.

In both of these models we assumed that the sources were either diffuse
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or of low enough luminosity that only a small part of the disc contributes

resolved rather than unresolved emission. We show belL-*-, that this assumption

should not greatly affect our results concerning the assessment of possible

discrete source contributions.

b. Spectrum

We use the two scalers in layer 1 and two in layer 2 of each of the

two detectors with 30 x 1.50 fields of view to construct 8 independent energy

windows for examining the spectrum. The energy response of the windows

overlaps and is mainly in the 2-15 keV band. For only 3 directions are the

flux measurements of high enough statistical significance for spectral fits to

be attempted. Figures 4(a) and (b) show the spectral fits to the data before

correction for absorption of the diffuse background, assuming power law and

thermal bremsstrahlung spectral forms respectively. These represent upper

bounds to the power law hardness and temperature. Figures 4(c) and (d) are

the fits after the correction has been made. After the absorption correction,

we see that the column densities we derive are roughly as expected, i.e. the

average column density between us and all points along the line cf sight. The

spectra are very soft relative to that of the diffuse background (Marshall et

al. 1980) and slightly softer than that found by Iwan et al. (1981) for the

more extended unresolved galactic component. Our ridge detection is not

significant above 15 keV.

III. DISCUSSION

Although the emissivity distribution of the unresolved 2-10 keV X-ray

component is probably not completely smooth (we have only upper limits in some

directions), within our statistics it can be modelled as a disc, best fit if

the emissivity has a small radial dependence. This radial dependence is not

unlike that exhibited by the total mass, neutral hydrogen and > 100 MeV

r,
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gamma-rays of the galaxy (Fig. 3). We note, however, that our scale height is

larger than for population I objects and tracers thereof, such as molecular

hydrogen clouds, and - 2 times that for neutral atomic hydrogen. The total

2-10 keV galactic luminosity in this unresolved component is a few per-cent of

that of known resolved galactic X-ray sources.

We can compare with the work of Bleach et al. (1972) and Wheaton (1976)

at 10 keV, an energy which is in the range of each experiment and at which the

photons are little affected by galactic absorption. At a longitude of - 600,

our flux of (6±1.6) 10- 2 cm-2 s' 1 sr-1 keV -1 agrees with Bleach et al. ((632.5)

10 -2 cm 2 s -1 sr' 1 keV-1 ). Wheaton's 550 longitude flux ((3.7±1.3) 10-2

cm' 2 s-1 keV -1 ) is lower than ours ((8t2) 10 -2 cm-2 s -1 sr-1 keV -1 ), but since he

reports flux from a disc which is 1.5-2.5 times thicker, there is agreement in

total ridge excess. Bleach et al. measured a spectral index of 2.8tO.5 (2-10

keV), which agrees well with the present work. Wheaton's value of 1.6±0.3

(10-40 keV) implies a flattening of the spectrum above 10 keV. Any direct

comparison of average emissivity depends on the scale height attributed to the

disc, more poorly determined in the previous experiments. Our 10 keV

emissivity is a factor of - 1.5 higher than that given by Wheaton and

comparable with that of Bleach et al.. We now consider some possible origins

for the disc radiation.

I. Discrete Sources

We emphasize that our measurements do not directly tell us of emission at

galactic radii R < 7.8 kpc. Furthermore, our information about emission at

distances ; 8 kpc from the sun in any direction is limited.

For simplicity, assumil,g uniform emissivity, if the surface density of

sources is n pc -2 and the average 2-10 keV luminosity is L erg/s,
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Ln = 1.2 10 
29 

erg/s/pc2

A single source we-10 exceed the intensity of the ridge and would thus be

clearly resolved if brighter than - 1 R15 ct/s and thus closer than d l where

d1 - 1.8 10
-14

/E pc
	

(2)

For each fit summed scan, data are from about a 6 degree longitude range.

Since a minimum of 3 sources must be contributing, each direction must

satisfy.

d2
	 r n dr > 3
	

(3)

1

where 0.105 (radians) is the detector field of view perpendicular to the scan

path. Since directions with d 2 < 8 kpc must satisfy (3), we can solve to

find

n > 1.4 10 -6 pc -2 ;	 L < 9.0 10 34 erg/s.

We can further restrict the luminosity by calculating the number of sources we

would expect to resolve at high galactic latitudes. We assume a simple

luminosity function:

f(L1 = A L-1

= 0 otherwise

L min < L < 102 Lmin

For the galactic absorption correction we adopt the approximate hydrogen
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density distribution given in section II(a). For populations of IT , we have

computed the number of high and low galactic latitude sources we would resolve

at various flux thresholds, assuming the population to be entirely responsible

for our ridge emissivity using its best fit exponential radial fats-off.

Fiqure 5 shows the results for a flux threshold of 5 Uhuru ct/s. This unit is

adopted to ease direct comparison with the Uhuru X-ray catalog (Forman et al.

1978). The number of resolved sources increases with t at low values

(N - t 1/2 is expected for a spherical source distribution with no galactic

absorption). For the high galactic latitude sources there is a maximum N such

that subsequent increases in luminosity, and thus s r-irce horizon, give no net

gain in N since the limit of the disc (slightly smaller than its geometric

size due to absorption effects) has been reached. We may have underestimated

N for t > 5 IU34 erg/s. At this high a luminosity the source horizon Is large

enough that our diffuse ridge models are inapplicable and our fitting has

underestimated the scale height and the source density.

All sources > 5 Uhuru ct/s at IN > 200 are identified (see summary of

Piccinotti et al. 1981). Of the 6 of galactic origin, Sco X1, Her `(1 and two

globular cluste r sources are members of populations which are too luminous to

account for the unresolved ridge. Only two, EX Hydrae and AM Her, both lying

close to the lower threshold, are members of classes of potential interest and

are discussed below. With 95% conf`dence we can therefore exclude populations

from luminosity ranges for which we would predict more than - 6.3 resolved

sources i.e. 1.5 1032 - 4 1033 erg/s (Figure 5). We are left with permitted

luminosity ranges of 4 10 33 - 9 1034 erg/s and < 1.5 10 32 erg/s.

As can be seen from Figure ^), if the higher luminosity sources (in the

range 4 1033 - 9 1034 erg/s) are significant contributors to the ridge, there

should be a substantial number of resolved low latitude sources of strength >
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5 Uhuru ct/s. Matilsky (1977) concluded that such a population of X-ray

sources exists based upon the fact that the 5 . 50 Uhuru ct/s Ibl < 20 0 sources

from the 3U catalogue exhibit a larger dispersion in galactic latitude than

the higher intensity ones. Rothenflug, Rocchia and Casse (1979) achieved the

latitude dispersion without invoking close medium luminosity sources by

assuming runaway systems for which the scale-height increases with distance

from the galactic center. However, in discussing the galactic ridge flux of

Bleach et al. (1972), they concluded that a medium luminosity population could

be accommodated within the statistics of observed sources, but it would be in

excess of a smooth continuation of the luminosity distribution for more

luminous sources. Protheroe and Wolfendale (1980a) noted that the

longitudinal distr i bution of the weakest low latitude Uhuru sources is

evidence for a medium luminosity population.

Since these reports, several more of the Uhuru sources have been

identified. From the 5-50 Uhuru ct/s sources in the revised 4U catalogue

(Forman et al. 1978), candidates for a population of 4 10 33 - 9 1034 erg/s now

number - 5 for 60 < I < 300 and - 16 for ILI < 60 (c.f. Matilsky's 20 and

27). Although the ridge is consistent with giving 40-100% of the sources in

the range ILI < 600 , it predicts an excessive number for 60 < t < 300 such

that agreement with the observations is only .8t (9 10 34 erg/s population) or

5% (4 1033 erg/s population) probable. It is more likely that < 50% of the

ridge is due , to a mea' um luminosity  source pop-il ati on .

Candidates for both the permitted luminosity ranges are known. None

clearly stands out as the obviously responsible population and several could

well contribute a significant percentage of the ridge flux. We discuss

briefly here whether or not they could produce the observed characteristics.

(a) Medium Luminosity Binary Systems
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Mushotzky et al. (1977) suggested that binary systems containing Be stars

could contribute the ridge emission of Wheaton (1975). Some members of this

class have 2-10 keV luminosities of a few times 10 33 erg s-1 (X Per and y Cas),

others in excess of 10 35 erg s-1 (HEN 715, WRA 977 and GX 304-1) (see Bradt,

Doxsey and Jernigan 1979). The scale height of B stars is only - 60 pc (Allen

1973), but, as Rothenflug, Rocchia and Cass (1979) point out, runaway

velocities from a supernova producing a neutron star could broaden the

distribution by the time those systems become X-ray sources of this

luminosity.

Neutron star binaries with normal companions of lower mass than Be stars

could also contribute (Ogelman and Swank 1974). The pulsars among these have

spectra significantly harder than that we deduce for the ridge, but the

spectrum could depend on the luminosity.

The luminosity range 1034 - 1035 erg/s is possible for white dwarf

binaries (Kylafis and Lamb 1979). No such candidates have been firmly

identified but no reason is presently known why candidates should not

evolve. The temperature we observe is about that which Kylafis and Lamb

predict for such sources.

(b) Lower Luminosity White Dwarf Binary Systems

We exclude AM Her-type objects as a major contributor on the basis of the

X-ray spectrum. A flat spectrum, similar to that of the high latitude diffuse

background, was found for AM Her by Swank et al. (1977) and 0311-227 by White

(1981).

In the 2-10 keV range the brightest dwarf novae have luminosities up to a

few times 1032 erg s -1 . Although variable, the spectra tend to fit thermal

bremsstrahlung forms with kT - 5-20 keV (Swank et al. 1978a, 1978b). If the

mean luminosity of sources is - 2 1031 erg s-1 , a space density of - 10-5

ff':
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pc -3 is required for a substantial contribution to the ridge. Taking there to

be a few within - 100 pc of the sun, the density could be a few times 10-6

PC -3 , and thus at this time we cannot reject the class as a potentially large

contributor.

(c) RS CVn Systems

RS CVn systems have recently been found to emit at two temperatures, - 6

106 K and - 50 106 K, with roughly equal energy in each component; 1030-1031

erg s-1 at 0.4-4 keV (Swank and White 1 980; Swank et al. 1981). For a thermal

bremsstrahlung spectrum of 50 10 6 K. the 2-10 keV luminosity is a factor of 2

below that for 0.4-4 keV. RS CVn systems are estimated to have a space

density of about 10 -5 pc -3 (Waiter. Charles and Bowyer 1978) although a scale

height of only about 110 pc. At a mean 2-10 keV luminosity of 5 10 30 erg s-1,

they could contribute 8-271 of the ridge.

(d) Other Stars

Our scale height is compatible with the X-rays originating from stars of

type later than about F (Allen 1973). Although all types of stars are X-ray

emitters in the energy range - 0.2-3 keV (Vaiana et al. 1481), contributions

to the ridge remain uncertain until it is known whether or not coronal

emission of a temperature of about 50 10 6 K, as seen in the RS CVn systems, is

a common feature of late stars. Temperatures measured for early-type stars

are below 5 10 6 K (Cassinelli et al. 1981).

Thus, present estimates of the densities of RS CVn stars and cataclysmic

variables make each sum likely to contribute - 1511, of the ridge and comparable

amounts might come from even lower luminosity late-type stars. That appears

to leave a majority of the deduced ridge emission still unaccounted for and so

these categories do not challenge previous suggestions of a population with
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luminosity _ 1034 erg s -1 (possibly including sources mentioned to (a)

above). However, a large sample of these sources should be among the known

resolved sources and the number so far identified places a likely limit on the

ridge contribution of < 501".

In Figure 6 we show the contribution which a population entirely

responsible for the ridge would make to the observed number of resolved Uhuru

sources given by Matilsky (1977) for our exponential radially-dependent best

fit ridge parameters. For a population in the higher luminosity range the log

N - log S curve should steepen below - 1 Uhuru ct/s although at slightly lower

count rates the sources become resolved throughout the galaxy and the curve

should become flat. If, on tl,e other hand, very low luminosity sources are

responsible for the ridge, the steepening should be more pronounced, but not

until below 0.2 ct/s. We have also estimated the effect these populations

should have for the IPC on the Einstein Observatory. We assume an

extrapolation of our derived spectrum into the energy range of the Einstein

Observatory (0.1-4.5 keV). (Note that the galactic gas (modelled as given in

Section IIa) has a greater effect in reducing the count rate than for the

Uhuru enero- range). Figure 6 shows the average source density for 80 sq.deg.

regionsawards the galactic center and anticenter. We infer that sources of

the higher luminosity should show up in typical 2000 sec IPC exposures

(smin ' 3 10-2 ct/-.) towards the galactic center at a density of a few per

square degree, whereas 40,000 sec exposures (smin ' 2 10 -3 ct/s) towards the

antizenter should reveal sources of the lower luminosity at a similar density.

2.	 Diffuse Emission

(a) Hot Gas

Figure 4(d) shows that our spectral results are consistent with thermal

emission from a hot gas in the range 1-7 10 7 K. Evidence for a hot component

as
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of gas in the interstellar medium has come from ultraviolet 0 VI lines and

diffuse soft X-ray emission below 2 keV (see review of McCray and Snow

1979). Various temperatures have been suggested for the gas, usually ranging

between 10 5 and 5 106 K, with some evidence for real spatial variations. For

the temperature and emissivity we deduce, distributed hot gas would have too

high a pressure (- 4 104 cm-3 K) to be in pressure equilibrium with the cooler

gases (Cox and Smith 1974). Maintenance of as much 3 10 7 K gas as 106 K gas

seems unlikely. Young supernovae remnants (= 20 pc in diameter) can

have _ 1035 erg s -1 luminosity at 3 10 7 K, but the identified radio sample is

thought complete (Clark and Caswell 1976) and there would not be enough to

contribute significantly.

(b) Inverse Compton Emission

2-10 keV X-rays can be produced by inverse compton scattering of the

microwave background on cosmic ray electrons and positrons which have energies

of a few GeV (see e.g. Ginzburg and Syrovatskii 1964; Blumenthal and Gould

1970).

The local electron density at these energies can be measured directly,

but the scale height of the electrons depends on how quickly they propagate

after crossing the disc boundary. If the propagation is slow, they could lose

a large proportion of their energy in a region local enough to the disc to fit

the sometimes-used description of "galactic halo". Interpretations of high

latitude radio data (Strong 1977) and gamma-ray measurements (see Stecker

1979) suggest that there is probably not a drastic decrease in electron

density beyond the disc boundary and that they have a scale height of a few

kpc. Such interpretations are however highly model dependent. Warwick, Pye

and Fabian (1980) calculate a local X-ray emissivity of 8 10 -31 erg rm-3s-1
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(2-10 keV) with an uncertainty of a factor of a few. Since the scale height

of their unresolved X-ray disc is undetermined, their data support an

emissivity this low, within errors. However, the discrepancy with our

measurements is a factor of 8-11. The unlikelihood that the emission has the

required scale height and the fact that the predicted X-ray spectral

slope (r - 1.9) is harder than measured are further reasons for rejecting this

as the dominant emission process.

The contribution from inverse Compton scattering of starlight on the

cosmic ray electrons and positrons is open to more uncertainty since the local

density of cosmic rays in the relevant 15-40 MeV energy range cannot be

inferred without the model-dependent solar modulation correction to

observations. Electrons of these er!!Rrgies lose energy mainly by ionization in

a lifetime of 2 106 - 2 107 years (see e.g. Ginzburg and Syrovatskii 1964 for

relevant formulae) and their scale height is thus probably compatible with

that of the X-ray ridge. An electron spectrum J(E e ) = A Ee-m cm-2s-lsr-leV-1

will produce an X-ray emissivity q(E) _ E -(m+1)/2 cm-3 s -1 eV -1 . Since our data

require (m+l)/2 = 2.8, the electrons must have a very steep index; m = 4.6.

The production is well within the Thomson regime and we use the formulae given

in Ginzburg and Syrovatskii (1964) to find that in order to satisfy our 2-10

keV local X-ray volume emissivity, J(E e ) = 1.8 1029 E e-4.6 cr - 2 s -1 sr-1 eV -1 . We

have assumed a local starlight energy density of 0.44 eV cm-3 and a mean

photon energy of 1.4 eV. If we relax the spectral index constraints slightly

to allow m = 3.8, we find J(E e ) - 2.4 1023 Ee-3.8 cm-2 s -1 sr-1 eV -1 . In the

10-30 MeV range these fluxes are about five orders of magnitude above the

electron observations at earth, after solar modulation has played a role (see

summary of Ramaty 1974). The values are also two orders of magnitude above

both the extrapolation of the fluxes determined above - 100 MeV by Webber,

1

t

Mt
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Simpson and Cane (1980), from an analysis of non-thermal radio data in the

galactic disc, and also their estimated range for the 10-100 MeV band using

solar modulation theory. There is currently no reason to think that an

electron component of the required steep spectrum and intensity exists.

We note that inverse Compton scattering of far-infrared radiation at

about 0.012 eV on electrons of energy 200-400 MeV can also produce 2-10 keV

X-rays. Using the 200-400 MeV flux of Webber, Simpson and Cane (1980), the

predicted far-infrared-produced flux is only 0.1% of our observations, even

allowing for a local photon energy density as large as for starlight.

(c) Synchrotron Radiation

Synchrotron emission is the mechanism favored by Protheroe, Wolfendale

and Wdowczyk (1980) to interpret the Uhuru high latitude variation. Bleach et

al. (1972) and Warwick, Pye and Fabian (1980) both pointed out that

synchrotron radiation could provide a sufficient emissivity if the electron

spectrum continued to sufficiently high energy and that too little is known

about the electron spectrum to rule this out. We can, however, consider the

energy requirements and the significance of a contribution from this

mechanism.

Assuming a magnetic field of 3 10 -6 Gauss, electrons of about 10 14 eV are

required to produce the X-rays. The lifetime of such particles to synchrotron

radiation is therefore t = 10 4 years. Cosmic rays of rigidity > 7.6 GV

exhibit an energy dependent path length in the galactic disc before escape to

a region from which they cannot return to the solar system vicinity. Assuming

electrons travel by diffusion, the energy dependence in the diffusion

coefficient is roughly D = D o (Ee /7.6) 0.4 for Ee > 7.6 GeV (Ormes and F reier

1978). Combining results of Stecker and Janes (1977) and Jones (1979), D o  < 6

1027 cm2 s -1 . This implies that electrons of 1014 eV will travel - /W < 170

t&
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pc in their lifetime. The particles can therefore be expected to fill a disc

extended by a few hundred parsecs from that of their sources. Considering the

uncertainties in D and the nature of the sources, a volume comparable with our

X-ray disc would not seem unreasonable.

We can calculate the required rate of energy injection into the

electrons. For X-rays of energy E from electrons of energy E e , E = b Eel,

where b = 6.62 10-20 H(Gauss). For an injection,

j(Ee ) = k Ee-m s
-1 eV-1

and total energy 'loss by synchrotron radiation, the gala>y emission is,

Q
s
 (E)=	 1	 fM j(Ee )dE e s -1 eV -1	 (4)

E 2 3br ,;

(e.g. Wolfendale and Worrall 1977).

The local electron spectrum from a few GeV out to its highest measured

energies (- 10 3 GeV) exhibits a spectral index of - 2.7 (e.g. Muller and Meyer

1973). The degree to which this index is that of the injection spectrum

depends on the electron propagation. If the electrons depart quickly from the

vicinity of the disc after a containment time of 10 6 - 10 7 yrs (likely times

for nuclear cosmic rays) then, since up to a few tens of GeV the energy losses

will be negligible, the injection spectrum will have the same index, i.e.

m z 2.7. If, however, the electrons remain longer in a "galactic halo", then

the ambient spectrum will reflect energy losses and thus be steeper than the

injection spectrum. Support for this i n terpretation was presented in the

previous section. Protheroe and Wolfendale (1980b) conclude that an injection

index of m = 2.2 gives the best agreement with a variety of astrophysical

observations. This would imply an X-ray index of 2.1 which may not be

M.
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inconsistent with our data if we allow a 3 sigma error margin. Since

Q ( E ) a b(m-2)/2, we see that the dependence on H is extremely weak. Assuming

H = 3 10 -6 Gauss and fitting the local X-ray emissivity we find J(E e ) = 1053

Ee-2.2 S-1 eV -1 . If this injection spectrum is extrapolated to 10 MeV, the

energy rate is 1048 erg yr-1 . If, for example, the energy for particle

acceleration is supplied by supernovae at a rate of one per 30 years (Higdon

and Lingenfelter 1980), this would require 3E 51% of a supernova's energy,

where E 51 is its total energy in units of 10 51 ergs. Although the mechanism

of Blandford and Ostriker (1978) will allow 10 50 ergs per supernova to

accelerate protons, our requirements are perhaps uncomfortably high. We

expect the energy injected into protons to be at least as high as that into

the electron component. If the injection spectra of electrons and protons are

both roughly power laws in kinetic energy down to mildly non-relativistic

energies, then they share roughly equal total energy density. Extending the

electron spectrum down to non-relativistic energies, rather than cutting it

off at 10 MeV, roughly doubles its required energy input.

There is however a further consequence. We stated that for this model

the electrons of a few GeV in energy must be losing energy in the "galactic

halo". Since the majority of this energy will be lost via inverse Compton

scattering of the microwave background, we can use expression (4) above, with

b - 3.4 10 -15 , to find a 2-10 keV X-ray luminosity of 1.6 10 39 erg s-1 . This

is a factor of - 4 higher than the luminosity in the more extended (- 3 kpc

scale-height) unresolved galactic X-ray component (Iwan et al. 1981).

The model with m = 2.7 can also be rejected since the energy requirement

of - 1048 erg yr-1 is increased to - 7 1050 erg yr-I.

IV. CONCLUSIONS

HEAO-1 A2 experiment scans through the galactic plane exhibit ridges of

IL #
	

(
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enhanced unresolved X-ray emission in a number of longitude directions. The

IL,	 data are treated in a systematic way ar;d found to be consistent with a model

of emission from a disc, aligned with the conventional galactic disc. The

fluxes in various directions can be best fit to a model in which X-ray

emissivity (2-10 keV) has a dependence on galactic radius. Although the

derived dependence is reasonably strong, our data only relate to radii > 7.8

kpc. We find a disc half-thickness of - 241 pc.

It is unlikely that our emissio-. is predominantly from any of the

considered diffuse processes. The contribution from synchrotron radiation is

probably the most uncertain since the density of high energy (10 14 eV)

electrons is highly model dependent. However, we have argued for a

contribution of less than 25% since a consequence is the requirement for

electrons of a few GeV being trapped in an extended "galactic halo" and there

is already a limit to the electron density in such a halo from the X-rays

produced by inverse Compton scattering of the microwave background radiation.

It is likely that our observed flux is of discrete source origin. The

2-10 keV X-ray luminosity of any dominant population must be < 1.5 10 32 erg

S-1 or 4 1033 - 9 1034 erg s-1 . Several types of discrete sources may

contribute competitively, notably RS CVn binaries, dwarf novae and other

neutron star and/or white dwarf binaries not y?t well classified. A log N -

log S curve for sources with X-ray fluxes 10 -14 - 10-10 erg cm-2 s -1 would

constrain the relative contributions of these sources.
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TABLE 1

DERIVED EMISSIVITIES FOR THE 23 DIRECTIONS

a b c d e f y h

51 20.3 33 21110 353/55 144/94 9.8 t 0.4 245 t 29

54 *+ 19.7 33 3/0/0 128/93 100/96 10.0 t 0.5 268 t 34

57 19.1 44 1/1/1 309/97 122/94 11.7	 t 0.8 116 t 29

60 18.5 44 1/3/1 355/97 143/90 7.6 t 0.6 225 t 49

63 17.8 44 2/2/2 320/95 148/92 7.6 t 0.5 388 t 54

84 * 13.6 69 3/3/3 99/93 - <	 9.3 -

93 * 12.0 86 3/3/3 213/93 108/90 7.2 t 0.6 219 t 52

96 * 11.5 89 3/3/2 150/93 110/90 7.6 t 0.6 203 t 52

102 * 10.6 79 3/3/3 96/93 85/90 3.5 t 0.8 303 t 173

105 *+ 10.2 75 1/1/1 139/97 97/94 5.6 t 0.6 275 t 86

108 9.8 72 3/3/3 131/93 121/90 4.8 t 0.8 354 t 164

117 * 8.7 58 2/2/2 103 /QS - <	 5.8 -

129 * 7.7 46 3/3/3 104/93 - <	 3.9 -

237 * 8.2 43 3/3/2 112/93 90/90 5.1	 t 1.4 320 t 147

t43 8.7 44 21111 133/95 - <	 5.5 -

246 9.1 49 0/0:10 131/99 - <	 4.0 -

249 * 9.4 51 0/0/O 117/99 - <	 3.1 -

252 * 9.8 53 21210 117/95 - <	 3.1 -

255 * 10.2 57 1/l/1 108/97 - <	 3.1 -

258 10.6 61 1/l/l 136/97 - <	 2.8 -

2/6 13.6 89 1/l/l 156/97 129/94 4.5 ± 0.6 170 t 78

or 



26

279 *+
	

14.1	 85	 1/l/l	 126/97
	

83/94	 5.3 t 0.6	 193 2 65

282
	

14.7	 79	 21212	 150/95
	

137/92	 3.5 t 0.7	 408 t Ill

Column a: Galactic longitude in degrees

b: Line of siqht, r(kpc), for disc radius R=16 kpc and sun-galactic center

distance of 10 kpc

c: Angle between ecliptic scan direction and galactic disc, e, in degrees

d: Number of fit sources; without ridge/with ridge/number of required known

sources. (Fit sources are allowed to exceed known sources if this results

in an improved chi-squared)

e: Chi-squared/degrees of freedom; no ridge

f: Chi-squared/degrees of freedom; with ridge, assuming exponential radial

emissivity model. (Only directions in which chi-squared improved when

ridge added).

g: Average emissivity for line of sight in uniform emissivity model (erg/cm3/s

x 1030 ). Upper limits are 2 sigina.

h: z112 (pc) for exponential radial emissivity model.

*Final chi-squared acceptable at 95% probability level.

+Spectral pat"ameters obtained.
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TABLE 2

BEST FIT MODEL PARAMETERS

A: UNIFORM EMISSIVITY

z1/2 
'2

	 ± 22 pc. Reduced chi-squared=0.6: Degrees cf freedom--6: Acceptable.

q=6.9 10-30 erg cm-3 s -1 . Reduced chi-squared =13; Degrees of freedom=22: Unacceptably

q s (R=10 kpc) = 1.3 10 -8 erg cm-2 s-1

L x (extrapolated to include all the disc) = 9.4 1037 erg s-1

B: RADIAL DEPENDENCE OF EMISSIVITY (R > 7.8 kpc measured)

z112 = 241 ± 22 pc Reduced chi-squared=0.4; Degrees of freedom =6: Acceptable.

q=1.5 10 -28 exp(-R(kpc)/3.5) erg cm-3s-1. Reduced chi-squared=4.6; Degrees of

freedom=21; Reduced chi-squared acceptable when an 18%

error to the model dependent diffuse background counts is

included

q s (R=10 kpc) = 1.2 10 -8 erg cm-2 s-1

L x (observed) = 4.4 10 37 erg s-1

L x (including extrapolation within 7.8 kpc) = 1.4 10 38 erg s-1

95% probability range for q: (9.7 10 -29 exp(-R/4.1) - 2.4 10 -28 exp(-R/3.0)) erg

cm-3s-1
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FIGURE CAPTIONS

Figure 1 - R15 count rates for accumulated scan segments, each centered at

galactic latutide b=0 0 , fl^; 14 different longitudes. The data are in

1/4-degree bins. The response to a point source is triangular. The solid

line shows the fit to the model which includes ridge emission, giving

a x2 improved by 
ox2 

over the model of constant flux plus c 3 discrete

sources. Absorption of the diffuse background is particularly evident in

directions such as 1 .540 and t=1050.

Figure 2 - Average volume emissivities along the 23 directions for uniform

emissivity model. Also shown is the average half-thickness of the disc for

the 14 directions for which we have a positive detection of the ridge. Solid

data points are those for which the final x 2 was acceptable: Their mean value

is 319 pc.

Figure 3 - The 95% probability range for the X-ray ridge volume emissivity

as a function of galactic radial distance. The dashed lines are an

extrapolation to radii not investigated by the present analysis. For

comparison, the galactic radial distributions of total mass (Innanen 1973),

neutral hydrogen (Burton 1976) a:id SAS II > 100 MeV gamma-rays (Strong and

Worrall 1976) are also shown. The 14 determinations of the disc

half-thickness for the radial emissivity model, for the directions for which

we have positive ridge detections, are also shown. Solid data points are

those for which the final x2 was acceptable: Their mean value is 241 pc.
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Figure 4 - 70% joint confidence limits on the spectral parameters for fits

to power law and thermal brcrosstrahlung models for the observed flux in three

directions ((a) and (b)), and the flux after correction for absorption of the

diffuse background ((c) and (d)).

Figure 5 - Expected number of sources of flux 	 5 Uhuru counts/s 0 Uhuru
ct/s d 2.4 10-11 erg cm-2 s-1 (2-10 keV)) as a function of mean luminosity for

a population ul' sufficient density to give the derived X-ray ridge

emissivity. We assume a luminosity function proportional to L -1 and source

populations which each cover two orders of magnitude in luminosity.

Figure 6 - Logarithmic plots of the predicted number of sources of flux

greater than S ct/s. assuming our radially dependent galactic ridge emissivity

is entirely due to a population of mean luminosity 1032 L 32 erg/s and

luminosity distribution as given in the text. The upper plot is for Uhuru

count rates and is an integral of all sources within 20 0 of the galactic

plane. For comparison. the dashed line is derived from Uhuru observations by

Matilsky (1977). The lower plots are for IPC count rates and show the average

number per square degree for a galactic center and an anticenter region.
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