20,593 research outputs found

    Collective excitations and low temperature transport properties of bismuth

    Full text link
    We examine the influence of collective excitations on the transport properties (resistivity, magneto- optical conductivity) for semimetals, focusing on the case of bismuth. We show, using an RPA approximation, that the properties of the system are drastically affected by the presence of an acoustic plasmon mode, consequence of the presence of two types of carriers (electrons and holes) in this system. We found a crossover temperature T* separating two different regimes of transport. At high temperatures T > T* we show that Baber scattering explains quantitatively the DC resistivity experiments, while at low temperatures T < T* interactions of the carriers with this collective mode lead to a T^5 behavior of the resistivity. We examine other consequences of the presence of this mode, and in particular predict a two plasmon edge feature in the magneto-optical conductivity. We compare our results with the experimental findings on bismuth. We discuss the limitations and extensions of our results beyond the RPA approximation, and examine the case of other semimetals such as graphite or 1T-TiSe_2

    Management of germ cell tumors in children: Approaches to cure

    Get PDF
    The introduction of cisplatinum chemotherapy and current advances in the surgical treatment have resulted in a dramatic improvement of the prognosis of children with malignant germ cell tumors (GCT). Cisplatinum chemotherapy generally results in sufficient systemic tumor control, but local relapses may still occur in patients who did not receive adequate local treatment. Therefore, the therapeutic consideration must take into account age, primary site of the tumor, and its histology. In gonadal tumors, there is a high chance of primary complete resection since these tumors tend to be encapsulated, and particularly testicular GCT are often detected at a low tumor stage. In contrast, a primary complete resection may be impossible in large nongonadal tumors such as sacrococcygeal or mediastinal GCT. In these tumors, a neoadjuvant or pre-operative chemotherapy after clinical diagnosis by imaging and evaluation of tumor markers significantly facilitates complete resection on delayed surgery. In addition, the impact of chemotherapy on local tumor control may be enhanced by locoregional hyperthermia. In most intracranial GCT complete resection is impossible and may be associated with significant morbidity. Nevertheless, biopsy is essential for diagnosis in nonsecreting tumors. In intracranial GCT, radiotherapy significantly contributes to local tumor control, and doses are stratified according to histology. These general considerations have been integrated into national and international cooperative treatment protocols. In most current protocols, treatment is stratified according to an initial risk assessment that includes the parameters age, site, histology, stage, completeness of resection and the tumor markers alpha(1)-fetoprotein (AFP) and human choriogonadotropin (beta-HCG). With such modern protocols overall cure rates above 80% can be achieved. Moreover, the previously high-risk groups may now expect a favorable prognosis with this risk-adapted treatment, whereas an increasing number of low-risk patients are treated expectantly or with significantly reduced chemotherapy. As current biologic studies reveal distinct genetic patterns in childhood GCT, it can be expected that further combined clinical and genetic studies will be valuable for risk assessment of childhood GCT

    The uniting of Europe and the foundation of EU studies: revisiting the neofunctionalism of Ernst B. Haas

    Get PDF
    This article suggests that the neofunctionalist theoretical legacy left by Ernst B. Haas is somewhat richer and more prescient than many contemporary discussants allow. The article develops an argument for routine and detailed re-reading of the corpus of neofunctionalist work (and that of Haas in particular), not only to disabuse contemporary students and scholars of the normally static and stylized reading that discussion of the theory provokes, but also to suggest that the conceptual repertoire of neofunctionalism is able to speak directly to current EU studies and comparative regionalism. Neofunctionalism is situated in its social scientific context before the theory's supposed erroneous reliance on the concept of 'spillover' is discussed critically. A case is then made for viewing Haas's neofunctionalism as a dynamic theory that not only corresponded to established social scientific norms, but did so in ways that were consistent with disciplinary openness and pluralism

    Probing the Light Pseudoscalar Window

    Get PDF
    Very light pseudoscalars can arise from the symmetry-breaking sector in many extensions of the Standard Model. If their mass is below 200 MeV, they can be long-lived and have interesting phenomenology. We discuss the experimental constraints on several models with light pseudoscalars, including one in which the pseudoscalar is naturally fermiophobic. Taking into account the stringent bounds from rare K and B decays, we find allowed parameter space in each model that may be accessible in direct production experiments. In particular, we study the photoproduction of light pseudoscalars at Jefferson Lab and conclude that a beam dump experiment could explore some of the allowed parameter space of these models.Comment: 22 pages, 4 figure

    Reexamining Black-Body Shifts for Hydrogenlike Ions

    Get PDF
    We investigate black-body induced energy shifts for low-lying levels of atomic systems, with a special emphasis on transitions used in current and planned high-precision experiments on atomic hydrogen and ionized helium. Fine-structure and Lamb-shift induced black-body shifts are found to increase with the square of the nuclear charge number, whereas black-body shifts due to virtual transitions decrease with increasing nuclear charge as the fourth power of the nuclear charge. We also investigate the decay width acquired by the ground state of atomic hydrogen, due to interaction with black-body photons. The corresponding width is due to an instability against excitation to higher excited atomic levels, and due to black-body induced ionization. These effects limit the lifetime of even the most fundamental, a priori absolutely stable, "asymptotic" state of atomic theory, namely the ground state of atomic hydrogen.Comment: 11 pages; LaTe

    Density of bulk trap states in organic semiconductor crystals: discrete levels induced by oxygen in rubrene

    Full text link
    The density of trap states in the bandgap of semiconducting organic single crystals has been measured quantitatively and with high energy resolution by means of the experimental method of temperature-dependent space-charge-limited-current spectroscopy (TD-SCLC). This spectroscopy has been applied to study bulk rubrene single crystals, which are shown by this technique to be of high chemical and structural quality. A density of deep trap states as low as ~ 10^{15} cm^{-3} is measured in the purest crystals, and the exponentially varying shallow trap density near the band edge could be identified (1 decade in the density of states per ~25 meV). Furthermore, we have induced and spectroscopically identified an oxygen related sharp hole bulk trap state at 0.27 eV above the valence band.Comment: published in Phys. Rev. B, high quality figures: http://www.cpfs.mpg.de/~krellner

    Performance of the EUDET-type beam telescopes

    Full text link
    Test beam measurements at the test beam facilities of DESY have been conducted to characterise the performance of the EUDET-type beam telescopes originally developed within the EUDET project. The beam telescopes are equipped with six sensor planes using MIMOSA26 monolithic active pixel devices. A programmable Trigger Logic Unit provides trigger logic and time stamp information on particle passage. Both data acquisition framework and offline reconstruction software packages are available. User devices are easily integrable into the data acquisition framework via predefined interfaces. The biased residual distribution is studied as a function of the beam energy, plane spacing and sensor threshold. Its standard deviation at the two centre pixel planes using all six planes for tracking in a 6\,GeV electron/positron-beam is measured to be (2.88\,\pm\,0.08)\,\upmu\meter.Iterative track fits using the formalism of General Broken Lines are performed to estimate the intrinsic resolution of the individual pixel planes. The mean intrinsic resolution over the six sensors used is found to be (3.24\,\pm\,0.09)\,\upmu\meter.With a 5\,GeV electron/positron beam, the track resolution halfway between the two inner pixel planes using an equidistant plane spacing of 20\,mm is estimated to (1.83\,\pm\,0.03)\,\upmu\meter assuming the measured intrinsic resolution. Towards lower beam energies the track resolution deteriorates due to increasing multiple scattering. Threshold studies show an optimal working point of the MIMOSA26 sensors at a sensor threshold of between five and six times their RMS noise. Measurements at different plane spacings are used to calibrate the amount of multiple scattering in the material traversed and allow for corrections to the predicted angular scattering for electron beams
    corecore