1,310 research outputs found

    Internal rotation of subdwarf B stars: limiting cases and asteroseismological consequences

    Full text link
    Observations of the rotation rates of horizontal branch (HB) stars show puzzling systematics. In particular, cooler HB stars often show rapid rotation (with velocities in excess of 10 km/s), while hotter HB stars typically show much smaller rotation velocities. Simple models of angular momentum evolution of stars from the main sequence through the red giant branch fail to explain these effects. In general, evolutionary models in all cases preserve a rapidly rotating core. The observed angular velocities of HB stars require that some of the angular momentum stored in the core reaches the surface. To test the idea that HB stars contain such a core, one can appeal to detailed computations of trace element abundences and rotational mixing. However, a more direct probe is available to test these limiting cases of angular momentum evolution. Some of the hottest horizontal branch stars are members of the pulsating sdB class. They frequently show rich pulsation spectra characteristic of nonradially pulsating stars. Thus their pulsations probe the internal rotation of these stars, and should show the effects of rapid rotation in their cores. Using models of sdB stars that include angular momentum evolution, we explore this possibility and show that some of the sdB pulsators may indeed have rapidly rotating cores.Comment: accepted for publication in The Astrophysical Journa

    Wave-vector dependent intensity variations of the Kondo peak in photoemission from CePd3_3

    Full text link
    Strong angle-dependent intensity variations of the Fermi-level feature are observed in 4d - 4f resonant photoemission spectra of CePd3_3(111), that reveal the periodicity of the lattice and largest intensity close to the Gamma points of the surface Brillouin zone. In the framework of a simplified periodic Anderson model the phenomena may quantitatively be described by a wave-vector dependence of the electron hopping matrix elements caused by Fermi-level crossings of non-4f-derived energy bands

    First Kepler results on compact pulsators II: KIC 010139564, a new pulsating subdwarf B (V361 Hya) star with an additional low-frequency mode

    Full text link
    We present the discovery of nonradial pulsations in a hot subdwarf B star based on 30.5 days of nearly continuous time-series photometry using the \emph{Kepler} spacecraft. KIC 010139564 is found to be a short-period pulsator of the V361 Hya (EC 14026) class with more than 10 independent pulsation modes whose periods range from 130 to 190 seconds. It also shows one periodicity at a period of 3165 seconds. If this periodicity is a high order g-mode, then this star may be the hottest member of the hybrid DW Lyn stars. In addition to the resolved pulsation frequencies, additional periodic variations in the light curve suggest that a significant number of additional pulsation frequencies may be present. The long duration of the run, the extremely high duty cycle, and the well-behaved noise properties allow us to explore the stability of the periodic variations, and to place strong constraints on how many of them are independent stellar oscillation modes. We find that most of the identified periodicities are indeed stable in phase and amplitude, suggesting a rotation period of 2-3 weeks for this star, but further observations are needed to confirm this suspicion.Comment: 10 pages, accepted for publication in MNRA

    Modeling the Sun's open magnetic flux and the heliospheric current sheet

    Full text link
    By coupling a solar surface flux transport model with an extrapolation of the heliospheric field, we simulate the evolution of the Sun's open magnetic flux and the heliospheric current sheet (HCS) based on observational data of sunspot groups since 1976. The results are consistent with measurements of the interplanetary magnetic field near Earth and with the tilt angle of the HCS as derived from extrapolation of the observed solar surface field. This opens the possibility for an improved reconstruction of the Sun's open flux and the HCS into the past on the basis of empirical sunspot data.Comment: 16 pages, 5 figures, Accepted for publication in Ap

    Discovery of Spectroscopic Variations in the DAB White Dwarf GD 323

    Full text link
    We report the discovery of spectroscopic variations in GD 323, the prototypical DAB white dwarf. Simultaneous optical spectroscopic observations over five consecutive nights of GD 323 and of PG 1234+482, a non-variable comparison DA white dwarf of similar brightness, are used to reveal quasi-periodic variations in both the hydrogen and helium absorption lines over a timescale of hours. The amplitude of the variation of the equivalent width of Hbeta is ~30 %. Moreover, the strength of the hydrogen lines is shown to vary in opposite phase from that of He I 4471. These results suggest that the model currently thought to be the most viable to account for the simultaneous presence of hydrogen and helium lines in GD 323, namely a static stratified atmosphere, may need to be reexamined. Instead, a model with an inhomogeneous surface composition, resulting perhaps from the dilution of a thin hydrogen atmosphere with the underlying helium convection zone, may be a better representation of GD 323. The observed variation timescale of ~3.5 hours is consistent with the slow rotation rate of white dwarf stars.Comment: 23 pages, 8 figures, accepted for publication in the Astrophysical Journa

    Determining the Elemental and Isotopic Composition of the preSolar Nebula from Genesis Data Analysis: The Case of Oxygen

    Get PDF
    We compare element and isotopic fractionations measured in solar wind samples collected by NASA's Genesis mission with those predicted from models incorporating both the ponderomotive force in the chromosphere and conservation of the first adiabatic invariant in the low corona. Generally good agreement is found, suggesting that these factors are consistent with the process of solar wind fractionation. Based on bulk wind measurements, we also consider in more detail the isotopic and elemental abundances of O. We find mild support for an O abundance in the range 8.75 - 8.83, with a value as low as 8.69 disfavored. A stronger conclusion must await solar wind regime specific measurements from the Genesis samples.Comment: 6 pages, accepted by Astrophysical Journal Letter

    Energy-sensitive imaging detector applied to the dissociative recombination of D2H+

    Full text link
    We report on an energy-sensitive imaging detector for studying the fragmentation of polyatomic molecules in the dissociative recombination of fast molecular ions with electrons. The system is based on a large area (10 cm x 10 cm) position-sensitive, double-sided Si-strip detector with 128 horizontal and 128 vertical strips, whose pulse height information is read out individually. The setup allows to uniquely identify fragment masses and is thus capable of measuring branching ratios between different fragmentation channels, kinetic energy releases, as well as breakup geometries, as a function of the relative ion-electron energy. The properties of the detection system, which has been installed at the TSR storage ring facility of the Max-Planck Institute for Nuclear Physics in Heidelberg, is illustrated by an investigation of the dissociative recombination of the deuterated triatomic hydrogen cation D2H+. A huge isotope effect is observed when comparing the relative branching ratio between the D2+H and the HD+D channel; the ratio 2B(D2+H)/B(HD+D), which is measured to be 1.27 +/- 0.05 at relative electron-ion energies around 0 eV, is found to increase to 3.7 +/- 0.5 at ~5 eV.Comment: 11 pages, 12 figures, submitted to Physical Review

    The Unseen Population of F to K-type Companions to Hot Subdwarf Stars

    Full text link
    We present a method to select hot subdwarf stars with A to M-type companions using photometric selection criteria. We cover a wide range in wavelength by combining GALEX ultraviolet data, optical photometry from the SDSS and the Carlsberg Meridian telescope, near-infrared data from 2MASS and UKIDSS. We construct two complimentary samples, one by matching GALEX, CMC and 2MASS, as well as a smaller, but deeper, sample using GALEX, SDSS and UKIDSS. In both cases, a large number of composite subdwarf plus main-sequence star candidates were found. We fit their spectral energy distributions with a composite model in order to estimate the subdwarf and companion star effective temperatures along with the distance to each system. The distribution of subdwarf effective temperature was found to primarily lie in the 20,000 - 30,000 K regime, but we also find cooler subdwarf candidates, making up ~5-10 per cent. The most prevalent companion spectral types were seen to be main-sequence stars between F0 and K0, while subdwarfs with M-type companions appear much rarer. This is clear observational confirmation that a very efficient first stable Roche-lobe overflow channel appears to produce a large number of subdwarfs with F to K-type companions. Our samples thus support the importance of binary evolution for subdwarf formation.Comment: 30 pages, 10 figures, 11 tables. Accepted for publication in MNRA

    The Rigidly Rotating Magnetosphere of Sigma Ori E

    Full text link
    We attempt to characterize the observed variability of the magnetic helium-strong star sigma Ori E in terms of a recently developed rigidly rotating magnetosphere model. This model predicts the accumulation of circumstellar plasma in two co-rotating clouds, situated in magnetohydrostatic equilibrium at the intersection between magnetic and rotational equators. We find that the model can reproduce well the periodic modulations observed in the star's light curve, H alpha emission-line profile, and longitudinal field strength, confirming that it furnishes an essentially correct, quantitative description of the star's magnetically controlled circumstellar environment.Comment: 4 pages, 3 figures, accepted by Ap
    • 

    corecore