95 research outputs found

    Impact of bromide and iodide during drinking water disinfection and potential treatment processes for their removal or mitigation

    Get PDF
    In this study, the impact of bromide and iodide on disinfected waters was examined and potential treatment technologies for their removal or mitigation were investigated. Distributed waters from two Western Australian drinking water sources were evaluated in terms of their bromide and iodide concentrations, disinfection by-product (DBP) formation, halogen-specific adsorbable organic halogen (AOX) formation and chlorinous odours after disinfection. In both systems, the brominated DBPs dominated the measured DBPs and, in both cases, the known DSPs accounted for only 30% of total organohalogens. Chloramination with a sufficient free chlorine contact time followed by ammonia addition, rather than preformed monochloramine, may be a viable mitigation strategy for the minimisation of I-OBPs, since exposure to free chlorine should promote the conversion of iodide to iodate, a safe form of iodine. This study has shown that bromide plays an important role in this process, mainly by enhancing the preferred conversion' of iodide to iodate. Ozone pre-treatment selectively oxidised iodide to iodate and minimised the formation of I-OB Ps. Complete conversion of iodide to iodate, while minimising the bromate formation to below the guideline value of 10 ”g L-1 was achieved for a wide range of ozone concentrations in raw waters, including raw waters with high bromide concentrations

    Estudio digital de las arterias coronarias

    Get PDF
    Objetivos: Estudiar la morfologĂ­a de las arterias coronarias utilizando anatomĂ­a digital, para poner en evidencia las distintas variaciones y su implicancia clĂ­nico-quirĂșrgica.Facultad de Ciencias MĂ©dica

    Inoculations with Arbuscular Mycorrhizal Fungi Increase Vegetable Yields and Decrease Phoxim Concentrations in Carrot and Green Onion and Their Soils

    Get PDF
    Background As one of the most widely used organophosphate insecticides in vegetable production, phoxim (C12H15N2O3PS) is often found as residues in crops and soils and thus poses a potential threat to public health and environment. Arbuscular mycorrhizal (AM) fungi may make a contribution to the decrease of organophosphate residues in crops and/or the degradation in soils, but such effects remain unknown. Methodology/Principal Findings A greenhouse pot experiment studied the influence of AM fungi and phoxim application on the growth of carrot and green onion, and phoxim concentrations in the two vegetables and their soil media. Treatments included three AM fungal inoculations with Glomus intraradices BEG 141, G. mosseae BEG 167, and a nonmycorrhizal control, and four phoxim application rates (0, 200, 400, 800 mg l−1, while 400 mg l−1 rate is the recommended dose in the vegetable production system). Carrot and green onion were grown in a greenhouse for 130 d and 150 d. Phoxim solution (100 ml) was poured into each pot around the roots 14d before plant harvest. Results showed that mycorrhizal colonization was higher than 70%, and phoxim application inhibited AM colonization on carrot but not on green onion. Compared with the nonmycorrhizal controls, both shoot and root fresh weights of these two vegetables were significantly increased by AM inoculations irrespective of phoxim application rates. Phoxim concentrations in shoots, roots and soils were increased with the increase of phoxim application rate, but significantly decreased by the AM inoculations. Soil phosphatase activity was enhanced by both AM inocula, but not affected by phoxim application rate. In general, G. intraradices BEG 141 had more pronounced effects than G. mosseae BEG 167 on the increase of fresh weight production in both carrot and green onion, and the decrease of phoxim concentrations in plants and soils. Conclusions/Significance Our results indicate a promising potential of AM fungi for enhancing vegetable production and reducing organophosphorus pesticide residues in plant tissues and their growth media, as well as for the phytoremediation of organophosphorus pesticide-contaminated soils

    Microbial enzymatic responses to drought and to nitrogen addition in a southern California grassland

    Full text link
    Microbial enzymes play a fundamental role in ecosystem processes and nutrient mineralization. Therefore understanding enzyme responses to anthropogenic environmental change is important for predicting ecosystem function in the future. In a previous study, we used a reciprocal transplant design to examine the direct and indirect effects of drought and nitrogen (N) fertilization on litter decomposition in a southern California grassland. This work showed direct and indirect negative effects of drought on decomposition, and faster decomposition by N-adapted microbial communities in N-fertilized plots than in non-fertilized plots. Here we measured microbial biomass and the activities of nine extracellular enzymes to examine the microbial and enzymatic mechanisms underlying litter decomposition responses to drought and N. We hypothesized that changes in fungal biomass and potential extracellular enzyme activity (EEA) would relate directly to litter decomposition responses. We also predicted that fungal biomass would dominate the microbial community in our semi-arid study site. However, we found that the microbial community was dominated by bacterial biomass, and that bacteria responded negatively to drought treatment. In contrast to patterns in decomposition, fungal biomass and most potential EEA increased in direct response to drought treatment. Potential EEA was also decoupled from the decomposition response to N treatment. These results suggest that drought and N alter the efficiencies of EEA, defined as the mass of target substrate lost per unit potential EEA. Enzyme efficiencies declined with drought treatment, possibly because reduced water availability increased enzyme immobilization and reduced diffusion rates. In the N experiment, the efficiencies of ÎČ-glucosidase, ÎČ-xylosidase, and polyphenol oxidase were greater when microbes were transplanted into environments from which they originated. This increase in enzymatic efficiency suggests that microbial enzymes may adapt to their local environment. Overall, our results indicate that drought and N addition may have predictable impacts on the efficiencies of extracellular enzymes, providing a means of linking enzyme potentials with in-situ activities

    Nitrogen Deposition Reduces Plant Diversity and Alters Ecosystem Functioning: Field-Scale Evidence from a Nationwide Survey of UK Heathlands

    Get PDF
    Findings from nitrogen (N) manipulation studies have provided strong evidence of the detrimental impacts of elevated N deposition on the structure and functioning of heathland ecosystems. Few studies, however, have sought to establish whether experimentally observed responses are also apparent under natural, field conditions. This paper presents the findings of a nationwide field-scale evaluation of British heathlands, across broad geographical, climatic and pollution gradients. Fifty two heathlands were selected across an N deposition gradient of 5.9 to 32.4 kg ha−1 yr−1. The diversity and abundance of higher and lower plants and a suite of biogeochemical measures were evaluated in relation to climate and N deposition indices. Plant species richness declined with increasing temperature and N deposition, and the abundance of nitrophilous species increased with increasing N. Relationships were broadly similar between upland and lowland sites, with the biggest reductions in species number associated with increasing N inputs at the low end of the deposition range. Both oxidised and reduced forms of N were associated with species declines, although reduced N appears to be a stronger driver of species loss at the functional group level. Plant and soil biochemical indices were related to temperature, rainfall and N deposition. Litter C:N ratios and enzyme (phenol-oxidase and phosphomonoesterase) activities had the strongest relationships with site N inputs and appear to represent reliable field indicators of N deposition. This study provides strong, field-scale evidence of links between N deposition - in both oxidised and reduced forms - and widespread changes in the composition, diversity and functioning of British heathlands. The similarity of relationships between upland and lowland environments, across broad spatial and climatic gradients, highlights the ubiquity of relationships with N, and suggests that N deposition is contributing to biodiversity loss and changes in ecosystem functioning across European heathlands

    A new application of passive samplers as indicators of <i>in-situ</i> biodegradation processes

    No full text
    In this paper, a method for evaluating the in-situ degradation of nitro polycyclic aromatic hydrocarbons (nitro-PAH) in sediments is presented. The methodology is adapted from the passive sampler technique, which commonly uses the dissipation rate of labeled compounds loaded in passive sampler devices to sense the environmental conditions of exposure. In the present study, polymeric passive samplers (made of polyethylene strips) loaded with a set of labeled polycyclic aromatic hydrocarbons (PAH) and nitro-PAH were immersed in sediments (in field and laboratory conditions) to track the degradation processes. This approach is theoretically based on the fact that a degradation process induces a steeper concentration gradient of the labeled compounds in the surrounding sediment, thereby increasing their compound dissipation rates compared with their dissipation in abiotic conditions. Postulating that the degradation magnitude is the same for the labeled compounds loaded in polyethylene strips and for their native homologs that are potentially present in the sediment, the field degradation of 3 nitro-PAH (2-nitro-fluorene, 1-nitro-pyrene, 6-nitro-chrysene) was semi-quantitatively analyzed using the developed method

    Assessing the transport of PAH in the surficial sediment layer by passive sampler approach

    No full text
    International audienceA new method based on passive samplers has been developed to assess the diffusive flux of fluorene, fluoranthene and pyrene in the sediment bed and across the sediment-water interface. The dissolved compound concentration gradient in the sediment in the vertical direction was measured at the outlet of a storm water pond by using polyethylene strips as passive samplers. Simultaneously, the dissipation of a set of tracer compounds preloaded in the passive samplers was measured to estimate the effective diffusion coefficients of the pollutants in the sediment. Both measurements were used to evaluate the diffusive flux of the compounds according to Fick's first law. The diffusive fluxes of the 3 studied compounds have been estimated with a centimetre-scale resolution in the upper 44 cm of the sediment. According to the higher compound diffusion coefficient and the steeper concentration gradient in the surficial sediment layer, the results show that the net flux of compounds near the sediment interface (1 cm depth) is on average 500 times higher than in the deep sediment, with average fluxes at 1 cm depth on the order of 5, 0.1 and 0.1 ng/m2/y for fluorene, fluoranthene and pyrene, respectively

    How do haloacetamides and haloacetic acids affect human intestinal epithelial cells?

    No full text
    International audienceIn this research, human intestinal epithelial cells (Caco-2) were exposed to haloacetamides and haloacetic acids. A 24, 48 and 72h exposure was conducted to determine the cytotoxicity of these compounds. The unregulated haloacetamides were clearly more cytotoxic than the regulated haloacetic acids. Moreover, changing the halogen from Cl to I increased the toxicity extensively. A 6h stimulation with 1 ”M of each compound and subsequent RNA extraction showed high upregulation of genes involved in both oxidative stress and inflammatory pathways with haloacetamide exposure, while no significant changes were seen for haloacetic acid exposure
    • 

    corecore