341 research outputs found

    Influence of association state and DNA binding on the O2-reactivity of [4Fe-4S] fumarate and nitrate reduction (FNR) regulator

    Get PDF
    The fumarate and nitrate reduction (FNR) regulator is the master switch for the transition between anaerobic and aerobic respiration in Escherichia coli. Reaction of dimeric [4Fe-4S] FNR with O2 results in conversion of the cluster into a [2Fe-2S] form, via a [3Fe-4S] intermediate, leading to the loss of DNA binding through dissociation of the dimer into monomers. In the present paper, we report studies of two previously identified variants of FNR, D154A and I151A, in which the form of the cluster is decoupled from the association state. In vivo studies of permanently dimeric D154A FNR show that DNA binding does not affect the rate of cluster incorporation into the apoprotein or the rate of O2-mediated cluster loss. In vitro studies show that O2-mediated cluster conversion for D154A and the permanent monomer I151A FNR is the same as in wild-type FNR, but with altered kinetics. Decoupling leads to an increase in the rate of the [3Fe-4S]1+ into [2Fe-2S]2+ conversion step, consistent with the suggestion that this step drives association state changes in the wild-type protein. We have also shown that DNA-bound FNR reacts more rapidly with O2 than FNR free in solution, implying that transcriptionally active FNR is the preferred target for reaction with O2

    Biochemical properties of Paracoccus denitrificans FnrP:Reactions with molecular oxygen and nitric oxide

    Get PDF
    In Paracoccus denitrificans, three CRP/FNR family regulatory proteins, NarR, NnrR and FnrP, control the switch between aerobic and anaerobic (denitrification) respiration. FnrP is a [4Fe-4S] cluster containing homologue of the archetypal O2 sensor FNR from E. coli and accordingly regulates genes encoding aerobic and anaerobic respiratory enzymes in response to O2, and also NO, availability. Here we show that FnrP undergoes O2-driven [4Fe-4S] to [2Fe-2S] cluster conversion that involves up to 2 O2 per cluster, with significant oxidation of released cluster sulfide to sulfane observed at higher O2 concentrations. The rate of the cluster reaction was found to be ~6-fold lower than that of E. coli FNR, suggesting that FnrP can remain transcriptionally active under microaerobic conditions. This is consistent with a role for FnrP in activating expression of the high O2 affinity cytochrome c oxidase under microaerobic conditions. Cluster conversion resulted in dissociation of the transcriptionally active FnrP dimer into monomers. Therefore, along with E. coli FNR, FnrP belongs to the subset of FNR proteins in which cluster type is correlated with association state. Interestingly, two key charged residues, Arg140 and Asp154, that have been shown to play key roles in the monomer-dimer equilibrium in E. coli FNR are not conserved in FnrP, indicating that different protomer interactions are important for this equilibrium. Finally, the FnrP [4Fe-4S] cluster is shown to undergo reaction with multiple NO molecules, resulting in iron nitrosyl species and dissociation into monomers

    Three Pseudomonas putida FNR Family Proteins with Different Sensitivities to O-2

    Get PDF
    The Escherichia coli fumarate-nitrate reduction regulator (FNR) protein is the paradigm for bacterial O2-sensing transcription factors. However, unlike E. coli, some bacterial species possess multiple FNR proteins that presumably have evolved to fulfill distinct roles. Here, three FNR proteins (ANR, PP_3233, and PP_3287) from a single bacterial species, Pseudomonas putida KT2440, have been analyzed. Under anaerobic conditions, all three proteins had spectral properties resembling those of [4Fe-4S] proteins. The reactivity of the ANR [4Fe-4S] cluster with O2 was similar to that of E. coli FNR, and during conversion to the apo-protein, via a [2Fe-2S] intermediate, cluster sulfur was retained. Like ANR, reconstituted PP_3233 and PP_3287 were converted to [2Fe-2S] forms when exposed to O2, but their [4Fe-4S] clusters reacted more slowly. Transcription from an FNR-dependent promoter with a consensus FNR-binding site in P. putida and E. coli strains expressing only one FNR protein was consistent with the in vitro responses to O2. Taken together, the experimental results suggest that the local environments of the iron-sulfur clusters in the different P. putida FNR proteins influence their reactivity with O2, such that ANR resembles E. coli FNR and is highly responsive to low concentrations of O2, whereas PP_3233 and PP_3287 have evolved to be less sensitive to O2

    Mass spectrometric detection of iron nitrosyls, sulfide oxidation and mycothiolation during nitrosylation of the NO sensor [4Fe-4S] NsrR

    Get PDF
    Identification of RRE-type iron-nitrosyl species formed upon nitrosylation of [4Fe–4S] NsrR.</p

    Mass spectrometric identification of intermediates in the O2-driven [4Fe-4S] to [2Fe-2S] cluster conversion in FNR

    Get PDF
    The iron-sulfur cluster containing protein FNR is the master regulator for the switch between anaerobic and aerobic respiration in Escherichia coli and many other bacteria. The [4Fe-4S] cluster functions as the sensory module, undergoing reaction with O2 that leads to conversion to a [2Fe-2S] form with loss of high affinity DNA-binding. Here we report studies of the FNR cluster conversion reaction using time-resolved electrospray ionization mass spectrometry. The data provide new insight into the reaction, permitting the detection of cluster conversion intermediates and products, including a novel [3Fe-3S] cluster and persulfide coordinated [2Fe-2S] clusters ([2Fe-2S](S)n, where n = 1 or 2). Analysis of kinetic data revealed a branched mechanism in which cluster sulfide oxidation occurs in parallel with cluster conversion, and not as a subsequent, secondary reaction, to generate ([2Fe-2S](S)n species. This methodology shows great potential for broad application to studies of protein cofactorsmall molecule interactions

    Glutathione Peroxidase-1 Primes Pro-Inflammatory Cytokine Production after LPS Challenge In Vivo

    Get PDF
    Reactive oxygen species produced during the innate immune response to LPS are important agents of anti-pathogen defence but may also cause oxidative lung damage. Glutathione peroxidase-1 (gpx-1) is an anti-oxidant enzyme that may protect lungs from such damage. We assessed the in vivo importance of gpx-1 in LPS-induced lung inflammation. Male wild-type (WT) or gpx-1 deficient (gpx-1−/−) mice were treated intranasally with PBS or 10 µg LPS and killed 3 and 24 h post LPS. Lungs were lavaged with PBS and then harvested for inflammatory marker expression. LPS caused an intense neutrophilia in WT BALF evident 3 and 24 h post challenge that was reduced in gpx-1−/− mice. In addition, LPS-treated gpx-1−/− mice had significantly fewer macrophages than LPS-treated WT mice. To understand the basis for this paradoxical reduction we assessed inflammatory cytokines and proteases at protein and transcript levels. MMP-9 expression and net gelatinase activity in BALF of gpx-1−/− mice treated with LPS for 3 and 24 h was no different to that found in LPS-treated WT mice. BALF from LPS-treated gpx-1−/− mice (3 h) had less TNF-α, MIP-2 and GM-CSF protein than LPS-treated WT mice. In contrast, LPS-induced increases in TNF-α, MIP-2 and GM-CSF mRNA expression in WT mice were similar to those observed in gpx-1−/− mice. These attenuated protein levels were unexpectedly not mirrored by reduced mRNA transcripts but were associated with increased 20S proteasome expression. Thus, these data suggest that gpx-1 primes pro-inflammatory cytokine production after LPS challenge in vivo

    'A light in a very dark place' : The role of a voluntary organisation providing support for those affected by encephalitis

    Get PDF
    Voluntary organisations are seen as contributing to the ‘democratisation’ of health and social care. Little, however, is written about their role and this paper, by focusing on the work of The Encephalitis Society, provides insights into the challenges facing voluntary organisations as they manage twin roles as service providers and advocates, of people with neurological disorders. Two studies are presented: a review conducted by the Society, focusing on patient’s experiences of neurological services; and an external evaluation of the Society’s current provision. The first, based on a postal survey of its members affected by encephalitis (n = 339), illustrates the Society’s advocacy role. The survey provided support for the Association of British Neurologists’ recommendation for nationally agreed standards of care. The second study, a postal survey of recent contacts (n = 76) and in-depth telephone interviews (n = 22), illustrates the Society’s value role as a service provider and supports its role in helping rehabilitate affected individuals and their families. These studies provided the Society with information for policy and service development. Importantly, providing the basis of informed action and partnership with stakeholders and informing the organisation’s sense of purpose, in the changing context of welfare provision in the UK

    The dpsA Gene of Streptomyces coelicolor: Induction of Expression from a Single Promoter in Response to Environmental Stress or during Development

    Get PDF
    The DpsA protein plays a dual role in Streptomyces coelicolor, both as part of the stress response and contributing to nucleoid condensation during sporulation. Promoter mapping experiments indicated that dpsA is transcribed from a single, sigB-like dependent promoter. Expression studies implicate SigH and SigB as the sigma factors responsible for dpsA expression while the contribution of other SigB-like factors is indirect by means of controlling sigH expression. The promoter is massively induced in response to osmotic stress, in part due to its sensitivity to changes in DNA supercoiling. In addition, we determined that WhiB is required for dpsA expression, particularly during development. Gel retardation experiments revealed direct interaction between apoWhiB and the dpsA promoter region, providing the first evidence for a direct WhiB target in S. coelicolor

    Structure of a Wbl protein and implications for NO sensing by M. tuberculosis

    Get PDF
    Mycobacterium tuberculosis causes pulmonary tuberculosis (TB) and claims ~1.8 million human lives per annum. Host nitric oxide (NO) is important in controlling TB infection. M. tuberculosis WhiB1 is a NO-responsive Wbl protein (actinobacterial iron-sulfur proteins first identified in the 1970s). Until now, the structure of a Wbl protein has not been available. Here a NMR structural model of WhiB1 reveals that Wbl proteins are four-helix bundles with a core of three α-helices held together by a [4Fe-4S] cluster. The iron-sulfur cluster is required for formation of a complex with the major sigma factor (σA) and reaction with NO disassembles this complex. The WhiB1 structure suggests that loss of the iron-sulfur cluster (by nitrosylation) permits positively charged residues in the C-terminal helix to engage in DNA binding, triggering a major reprogramming of gene expression that includes components of the virulence-critical ESX-1 secretion system
    • …
    corecore