128 research outputs found

    Microstructure and properties of PbCa grade alloys for starting battery grids

    Get PDF
    The paper presents results of the studies into microstructure and mechanical properties of PbCa grade alloys for starting battery grids. Three lead-calcium alloys with alloy additions of aluminium, tin, silver and magnesium were studied. Lead alloys were produced in laboratory tests from industrial master alloys and pure elements. The examined alloys have monophase microstructure of tin solid solution in the lead. The range between liquidus and solidus temperatures is c.a. 10 °C. The mechanical properties alloys depend on the amount of tin. PbCa alloys exposed to the process of natural ageing increase their strength, proof strength and hardness, simultaneously the plasticity decreases

    C9ORF72 hexanucleotide repeat exerts toxicity in a stable, inducible motor neuronal cell model, which is rescued by partial depletion of Pten.

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a devastating and incurable neurodegenerative disease, characterised by progressive failure of the neuromuscular system. A (G4C2)n repeat expansion in C9ORF72 is the most common genetic cause of ALS and frontotemporal dementia (FTD). To date, the balance of evidence indicates that the (G4C2)n repeat causes toxicity and neurodegeneration via a gain-of-toxic function mechanism; either through direct RNA toxicity or through the production of toxic aggregating dipeptide repeat proteins. Here, we have generated a stable and isogenic motor neuronal NSC34 cell model with inducible expression of a (G4C2)102 repeat, to investigate the gain-of-toxic function mechanisms. The expression of the (G4C2)102 repeat produces RNA foci and also undergoes RAN translation. In addition, the expression of the (G4C2)102 repeat shows cellular toxicity. Through comparison of transcriptomic data from the cellular model with laser-captured spinal motor neurons from C9ORF72-ALS cases, we also demonstrate that the PI3K/Akt cell survival signalling pathway is dysregulated in both systems. Furthermore, partial knockdown of Pten rescues the toxicity observed in the NSC34 (G4C2)102 cellular gain-of-toxic function model of C9ORF72-ALS. Our data indicate that PTEN may provide a potential therapeutic target to ameliorate toxic effects of the (G4C2)n repeat

    Osmosensitivity of Transient Receptor Potential Vanilloid 1 Is Synergistically Enhanced by Distinct Activating Stimuli Such as Temperature and Protons

    Get PDF
    In animals, body-fluid osmolality is continuously monitored to keep it within a narrow range around a set point (∼300 mOsm/kg). Transient receptor potential vanilloid 1 (TRPV1), a cation channel, has been implicated in body-fluid homeostasis in vivo based on studies with the TRPV1-knockout mouse. However, the response of TRPV1 to hypertonic stimuli has not been demonstrated with heterologous expression systems so far, despite intense efforts by several groups. Thus, the molecular entity of the hypertonic sensor in vivo still remains controversial. Here we found that the full-length form of TRPV1 is sensitive to an osmotic increase exclusively at around body temperature using HEK293 cells stably expressing rat TRPV1. At an ambient temperature of 24°C, a slight increase in the intracellular calcium concentration ([Ca2+]i) was rarely observed in response to hypertonic stimuli. However, the magnitude of the osmosensitive response markedly increased with temperature, peaking at around 36°C. Importantly, the response at 36°C showed a robust increase over a hypertonic range, but a small decrease over a hypotonic range. A TRPV1 antagonist, capsazepine, and a nonspecific TRP channel inhibitor, ruthenium red, completely blocked the increase in [Ca2+]i. These results endorse the view that the full-length form of TRPV1 is able to function as a sensor of hypertonic stimuli in vivo. Furthermore, we found that protons and capsaicin likewise synergistically potentiated the response of TRPV1 to hypertonic stimuli. Of note, HgCl2, which blocks aquaporins and inhibits cell-volume changes, significantly reduced the osmosensitive response. Our findings thus indicate that TRPV1 integrates multiple different types of activating stimuli, and that TRPV1 is sensitive to hypertonic stimuli under physiologically relevant conditions

    C9ORF72 interaction with cofilin modulates actin dynamics in motor neurons.

    Get PDF
    Intronic hexanucleotide expansions in C9ORF72 are common in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia, but it is unknown whether loss of function, toxicity by the expanded RNA or dipeptides from non-ATG-initiated translation are responsible for the pathophysiology. We determined the interactome of C9ORF72 in motor neurons and found that C9ORF72 was present in a complex with cofilin and other actin binding proteins. Phosphorylation of cofilin was enhanced in C9ORF72-depleted motor neurons, in patient-derived lymphoblastoid cells, induced pluripotent stem cell-derived motor neurons and post-mortem brain samples from ALS patients. C9ORF72 modulates the activity of the small GTPases Arf6 and Rac1, resulting in enhanced activity of LIM-kinases 1 and 2 (LIMK1/2). This results in reduced axonal actin dynamics in C9ORF72-depleted motor neurons. Dominant negative Arf6 rescues this defect, suggesting that C9ORF72 acts as a modulator of small GTPases in a pathway that regulates axonal actin dynamics

    Intestinal Epithelial Stem/Progenitor Cells Are Controlled by Mucosal Afferent Nerves

    Get PDF
    Background: The maintenance of the intestinal epithelium is of great importance for the survival of the organism. A possible nervous control of epithelial cell renewal was studied in rats and mice. Methods: Mucosal afferent nerves were stimulated by exposing the intestinal mucosa to capsaicin (1.6 mM), which stimulates intestinal external axons. Epithelial cell renewal was investigated in the jejunum by measuring intestinal thymidine kinase (TK) activity, intestinal H-3-thymidine incorporation into DNA, and the number of crypt cells labeled with BrdU. The influence of the external gut innervation was minimized by severing the periarterial nerves. Principal Findings: Luminal capsaicin increased all the studied variables, an effect nervously mediated to judge from inhibitory effects on TK activity or H-3-thymidine incorporation into DNA by exposing the mucosa to lidocaine (a local anesthetic) or by giving four different neurotransmitter receptor antagonists i.v. (muscarinic, nicotinic, neurokinin1 (NK1) or calcitonin gene related peptide (CGRP) receptors). After degeneration of the intestinal external nerves capsaicin did not increase TK activity, suggesting the involvement of an axon reflex. Intra-arterial infusion of Substance P (SP) or CGRP increased intestinal TK activity, a response abolished by muscarinic receptor blockade. Immunohistochemistry suggested presence of M3 and M5 muscarinic receptors on the intestinal stem/progenitor cells. We propose that the stem/progenitor cells are controlled by cholinergic nerves, which, in turn, are influenced by mucosal afferent neuron(s) releasing acetylcholine and/or SP and/or CGRP. In mice lacking the capsaicin receptor, thymidine incorporation into DNA and number of crypt cells labeled with BrdU was lower than in wild type animals suggesting that nerves are important also in the absence of luminal capsaicin, a conclusion also supported by the observation that atropine lowered thymidine incorporation into DNA by 60% in control rat segments. Conclusion: Enteric nerves are of importance in maintaining the intestinal epithelial barrier.Original Publication:Ove Lundgren, Mats Jodal, Madeleine Jansson, Anders T Ryberg and Lennart Svensson, Intestinal Epithelial Stem/Progenitor Cells Are Controlled by Mucosal Afferent Nerves, 2011, PLOS ONE, (6), 2, 16295.http://dx.doi.org/10.1371/journal.pone.0016295Copyright: Public Library of Science (PLoS)http://www.plos.org

    TMEM106B is a genetic modifier of frontotemporal lobar degeneration with C9orf72 hexanucleotide repeat expansions

    Get PDF
    Hexanucleotide repeat expansions in chromosome 9 open reading frame 72 (C9orf72) have recently been linked to frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis, and may be the most common genetic cause of both neurodegenerative diseases. Genetic variants at TMEM106B influence risk for the most common neuropathological subtype of FTLD, characterized by inclusions of TAR DNA-binding protein of 43 kDa (FTLD-TDP). Previous reports have shown that TMEM106B is a genetic modifier of FTLD-TDP caused by progranulin (GRN) mutations, with the major (risk) allele of rs1990622 associating with earlier age at onset of disease. Here, we report that rs1990622 genotype affects age at death in a single-site discovery cohort of FTLD patients with C9orf72 expansions (n = 14), with the major allele correlated with later age at death (p = 0.024). We replicate this modifier effect in a 30-site international neuropathological cohort of FTLD-TDP patients with C9orf72 expansions (n = 75), again finding that the major allele associates with later age at death (p = 0.016), as well as later age at onset (p = 0.019). In contrast, TMEM106B genotype does not affect age at onset or death in 241 FTLD-TDP cases negative for GRN mutations or C9orf72 expansions. Thus, TMEM106B is a genetic modifier of FTLD with C9orf72 expansions. Intriguingly, the genotype that confers increased risk for developing FTLD-TDP (major, or T, allele of rs1990622) is associated with later age at onset and death in C9orf72 expansion carriers, providing an example of sign epistasis in human neurodegenerative disease

    Stable transgenic C9orf72 zebrafish model key aspects of the ALS/FTD phenotype and reveal novel pathological features

    Get PDF
    A hexanucleotide repeat expansion (HRE) within the chromosome 9 open reading frame 72 (C9orf72) gene is the most prevalent cause of amyotrophic lateral sclerosis/fronto-temporal dementia (ALS/FTD). Current evidence suggests HREs induce neurodegeneration through accumulation of RNA foci and/or dipeptide repeat proteins (DPR). C9orf72 patients are known to have transactive response DNA binding protein 43 kDa (TDP-43) proteinopathy, but whether there is further cross over between C9orf72 pathology and the pathology of other ALS sub-types has yet to be revealed.To address this, we generated and characterised two zebrafish lines expressing C9orf72 HREs. We also characterised pathology in human C9orf72-ALS cases. In addition, we utilised a reporter construct that expresses DsRed under the control of a heat shock promoter, to screen for potential therapeutic compounds.Both zebrafish lines showed accumulation of RNA foci and DPR. Our C9-ALS/FTD zebrafish model is the first to recapitulate the motor deficits, cognitive impairment, muscle atrophy, motor neuron loss and mortality in early adulthood observed in human C9orf72-ALS/FTD. Furthermore, we identified that in zebrafish, human cell lines and human post-mortem tissue, C9orf72 expansions activate the heat shock response (HSR). Additionally, HSR activation correlated with disease progression in our C9-ALS/FTD zebrafish model. Lastly, we identified that the compound ivermectin, as well as riluzole, reduced HSR activation in both C9-ALS/FTD and SOD1 zebrafish models.Thus, our C9-ALS/FTD zebrafish model is a stable transgenic model which recapitulates key features of human C9orf72-ALS/FTD, and represents a powerful drug-discovery tool

    C9orf72-mediated ALS and FTD: multiple pathways to disease

    Get PDF
    The discovery that repeat expansions in the C9orf72 gene are a frequent cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) has revolutionized our understanding of these diseases. Substantial headway has been made in characterizing C9orf72-mediated disease and unravelling its underlying aetiopathogenesis. Three main disease mechanisms have been proposed: loss of function of the C9orf72 protein and toxic gain of function from C9orf72 repeat RNA or from dipeptide repeat proteins produced by repeat-associated non-ATG translation. Several downstream processes across a range of cellular functions have also been implicated. In this article, we review the pathological and mechanistic features of C9orf72-associated FTD and ALS (collectively termed C9FTD/ALS), the model systems used to study these conditions, and the probable initiators of downstream disease mechanisms. We suggest that a combination of upstream mechanisms involving both loss and gain of function and downstream cellular pathways involving both cell-autonomous and non-cell-autonomous effects contributes to disease progression

    Hyponatremia in the intensive care unit: How to avoid a Zugzwang situation?

    Get PDF
    corecore