632 research outputs found

    Experiences of cervical screening and barriers to participation in the context of an organised programme: a systematic review and thematic synthesis

    Get PDF
    OBJECTIVE: As uptake of cervical screening continues to decline, this systematic review synthesises the qualitative literature on women's perceptions and experiences of cervical screening in the context of an organised call-recall programme, in order to understand the barriers to informed uptake. METHODS: We searched nine databases for English language peer-reviewed publications reporting on qualitative data from screening-eligible women, exploring barriers to cervical screening in countries that offer a nationally organised call-recall programme. Evidence was integrated using thematic synthesis. RESULTS: Thirty-nine papers from the UK, Australia, Sweden and Korea were included. The majority of participants had attended screening at least once. Two broad themes were identified: (a) should I go for screening? and (b) screening is a big deal. In considering whether to attend, women discussed the personal relevance and value of screening. Women who had previously attended described how it was a big deal, physically and emotionally, and the varied threats that screening presents. Practical barriers affected whether women translated screening intentions into action. CONCLUSIONS: The variation in women's understanding and perceptions of cervical screening suggests that interventions tailored to decisional stage may be of value in increasing engagement with the invitation and uptake of screening in those who wish to take part. There is also a need for further research with women who have never attended screening, especially those who remain unaware or unengaged, as their perspectives are lacking in the existing literature. © 2016 The Authors. Psycho-Oncology Published by John Wiley & Sons Ltd

    Transport spectroscopy of an impurity spin in a carbon nanotube double quantum dot.

    Get PDF
    We make use of spin selection rules to investigate the electron spin system of a carbon nanotube double quantum dot. Measurements of the electron transport as a function of the magnetic field and energy detuning between the quantum dots reveal an intricate pattern of the spin state evolution. We demonstrate that the complete set of measurements can be understood by taking into account the interplay between spin-orbit interaction and a single impurity spin coupled to the double dot. The detection and tunability of this coupling are important for quantum manipulation in carbon nanotubes

    Is aging raw cattle urine efficient for sampling Anopheles arabiensis Patton?

    Get PDF
    Background: To ensure sustainable routine surveillance of mosquito vectors, simple, effective and ethically acceptable tools are required. As a part of that, we evaluated the efficiency of resting boxes baited with fresh and aging cattle urine for indoor and outdoor sampling of An. arabiensis in the lower Moshi rice irrigation schemes. Methods: A cattle urine treatment and re-treatment schedule was used, including a box with a piece of cloth retreated with urine daily, and once after 3 and 7 day. Resting box with piece of black cloth not treated with urine was used as a control. Each treatment was made in pair for indoor and outdoor sampling. A 4 by 4 Latin square design was used to achieve equal rotation of each of the four treatments across the experimental houses. Sampling was done over a period of 6 months, once per week. Results: A total of 7871 mosquitoes were collected throughout the study period. 49.8% of the mosquitoes were collected from resting box treated with urine daily; 21.6% and 20.0% were from boxes treated 3 and 7 days respectively. Only 8.6% were from untreated resting box (control). The proportion collected indoors was similar to 2 folds greater than the outdoor. Of all mosquitoes, 12.3% were unfed, 4.1% full fed, 34.2% semi-gravid and 49.4% gravid. Conclusion: Fresh and decaying cattle urine odour baited resting boxes offer an alternative tool for sampling particularly semi-gravid and gravid An. arabiensis. Evaluation in low density seasons of An. arabiensis in different ecological settings remains necessary. This sampling method may be standardized for replacing human landing catch

    Nanoscale spin rectifiers controlled by the Stark effect

    Get PDF
    The control of orbital and spin state of single electrons is a key ingredient for quantum information processing, novel detection schemes, and, more generally, is of much relevance for spintronics. Coulomb and spin blockade (SB) in double quantum dots (DQDs) enable advanced single-spin operations that would be available even for room-temperature applications for sufficiently small devices. To date, however, spin operations in DQDs were observed at sub-Kelvin temperatures, a key reason being that scaling a DQD system while retaining an independent field-effect control on the individual dots is very challenging. Here we show that quantum-confined Stark effect allows an independent addressing of two dots only 5 nm apart with no need for aligned nanometer-size local gating. We thus demonstrate a scalable method to fully control a DQD device, regardless of its physical size. In the present implementation we show InAs/InP nanowire (NW) DQDs that display an experimentally detectable SB up to 10 K. We also report and discuss an unexpected re-entrant SB lifting as a function magnetic-field intensity

    Giga-Hertz quantized charge pumping in bottom gate defined InAs nanowire quantum dots

    Get PDF
    Semiconducting nanowires (NWs) are a versatile, highly tunable material platform at the heart of many new developments in nanoscale and quantum physics. Here, we demonstrate charge pumping, i.e., the controlled transport of individual electrons through an InAs NW quantum dot (QD) device at frequencies up to 1.31.3\,GHz. The QD is induced electrostatically in the NW by a series of local bottom gates in a state of the art device geometry. A periodic modulation of a single gate is enough to obtain a dc current proportional to the frequency of the modulation. The dc bias, the modulation amplitude and the gate voltages on the local gates can be used to control the number of charges conveyed per cycle. Charge pumping in InAs NWs is relevant not only in metrology as a current standard, but also opens up the opportunity to investigate a variety of exotic states of matter, e.g. Majorana modes, by single electron spectroscopy and correlation experiments.Comment: 21 page

    Dispersively detected Pauli Spin-Blockade in a Silicon Nanowire Field-Effect Transistor

    Full text link
    We report the dispersive readout of the spin state of a double quantum dot formed at the corner states of a silicon nanowire field-effect transistor. Two face-to-face top-gate electrodes allow us to independently tune the charge occupation of the quantum dot system down to the few-electron limit. We measure the charge stability of the double quantum dot in DC transport as well as dispersively via in-situ gate-based radio frequency reflectometry, where one top-gate electrode is connected to a resonator. The latter removes the need for external charge sensors in quantum computing architectures and provides a compact way to readout the dispersive shift caused by changes in the quantum capacitance during interdot charge transitions. Here, we observe Pauli spin-blockade in the high-frequency response of the circuit at finite magnetic fields between singlet and triplet states. The blockade is lifted at higher magnetic fields when intra-dot triplet states become the ground state configuration. A lineshape analysis of the dispersive phase shift reveals furthermore an intradot valley-orbit splitting Δvo\Delta_{vo} of 145 μ\mueV. Our results open up the possibility to operate compact CMOS technology as a singlet-triplet qubit and make split-gate silicon nanowire architectures an ideal candidate for the study of spin dynamics
    corecore