3,590 research outputs found

    Proteomic Analysis to Identify Tightly-Bound Cell Wall Protein in Rice Calli.

    Get PDF
    Rice is a model plant widely used for basic and applied research programs. Plant cell wall proteins play key roles in a broad range of biological processes. However, presently, knowledge on the rice cell wall proteome is rudimentary in nature. In the present study, the tightly-bound cell wall proteome of rice callus cultured cells using sequential extraction protocols was developed using mass spectrometry and bioinformatics methods, leading to the identification of 1568 candidate proteins. Based on bioinformatics analyses, 389 classical rice cell wall proteins, possessing a signal peptide, and 334 putative non-classical cell wall proteins, lacking a signal peptide, were identified. By combining previously established rice cell wall protein databases with current data for the classical rice cell wall proteins, a comprehensive rice cell wall proteome, comprised of 496 proteins, was constructed. A comparative analysis of the rice and Arabidopsis cell wall proteomes revealed a high level of homology, suggesting a predominant conservation between monocot and eudicot cell wall proteins. This study importantly increased information on cell wall proteins, which serves for future functional analyses of these identified rice cell wall proteins

    The Decay D0Kˉ0πe+νeD^0\to \bar K^{*0} \pi^- e^+ \nu_e in the Context of Chiral Perturbation Theory

    Full text link
    We study the decay D0Kˉ0πe+νeD^0\rightarrow \bar K^{*0} \pi^- e^+ \nu_e, using SU(2)LSU(2)RSU(2)_L \otimes SU(2)_R chiral perturbation theory for heavy charmed mesons and vector mesons, in the kinematic regime where pMpπ/mMp_M \cdot p_\pi/m_M (here M=D0M = D^0 or Kˉ0\bar K^{*0}) is much smaller than the chiral symmetry breaking scale, ΛχSB\Lambda_{\chi SB} ( ΛχSB\Lambda_{\chi SB} \sim 1 GeV). We present the leading diagrams and amplitude, and calculate the rate, in the region where, to leading order in our calculations, the Kˉ0\bar K^{*0} is at zero recoil in the D0D^0 rest frame. The rate thus calculated is given in terms of a known form factor and depends on the DDπDD^* \pi coupling constant gDg_D of the heavy (charmed) meson chiral perturbation theory Lagrangian. A measurement of the above decay, in the aforementioned kinematic regime, can result in the extraction of an experimental value for gDg_D, accurate at the level of our approximations, and give us a measure of the validity of approaches based on chiral perturbation theory in studying similar processes.Comment: 17 pages, Latex, 2 embedded postscript figure

    Synthesis of Heterogeneous Li4Ti5O12 Nanostructured Anodes with Long-Term Cycle Stability

    Get PDF
    The 0D-1D Lithium titanate (Li4Ti5O12) heterogeneous nanostructures were synthesized through the solvothermal reaction using lithium hydroxide monohydrate (Li(OH)·H2O) and protonated trititanate (H2Ti3O7) nanowires as the templates in an ethanol/water mixed solvent with subsequent heat treatment. A scanning electron microscope (SEM) and a high resolution transmission electron microscope (HRTEM) were used to reveal that the Li4Ti5O12 powders had 0D-1D heterogeneous nanostructures with nanoparticles (0D) on the surface of wires (1D). The composition of the mixed solvents and the volume ratio of ethanol modulated the primary particle size of the Li4Ti5O12 nanoparticles. The Li4Ti5O12 heterogeneous nanostructures exhibited good capacity retention of 125 mAh/g after 500 cycles at 1C and a superior high-rate performance of 114 mAh/g at 20C

    Chiral Lagrangians for Radiative Decays of Heavy Hadrons

    Full text link
    The radiative decays of heavy mesons and heavy baryons are studied in a formalism which incorporates both the heavy quark symmetry and the chiral symmetry. The chiral Lagrangians for the electromagnetic interactions of heavy hadrons consist of two pieces: one from gauging electromagnetically the strong-interaction chiral Lagrangian, and the other from the anomalous magnetic moment interactions of the heavy baryons and mesons. Due to the heavy quark spin symmetry, the latter contains only one independent coupling constant in the meson sector and two in the baryon sector. These coupling constants only depend on the light quarks and can be calculated in the nonrelativistic quark model. However, the charm quark is not heavy enough and the contribution from its magnetic moment must be included. Applications to the radiative decays DDγ , BBγ , ΞcΞcγ ,ΣcΛcγD^\ast \rightarrow D \gamma~,~B^\ast \rightarrow B \gamma~,~ \Xi^\prime_c \rightarrow \Xi_c \gamma~, \Sigma_c \rightarrow \Lambda_c \gamma and ΣcΛcπγ\Sigma_c \rightarrow \Lambda_c \pi \gamma are given. Together with our previous results on the strong decay rates of DDπD^\ast \rightarrow D \pi and ΣcΛcπ\Sigma_c \rightarrow \Lambda_c \pi, predictions are obtained for the total widths and branching ratios of DD^\ast and Σc\Sigma_c. The decays Σc+Λc+π0γ\Sigma^+_c \rightarrow \Lambda^+_c \pi^0 \gamma and Σc0Λc+πγ\Sigma^0_c \rightarrow \Lambda^+_c \pi^- \gamma are discussed to illustrate the important roles played by both the heavy quark symmetry and the chiral symmetry.Comment: 30 pages (one figure, available on request), CLNS 92/1158 and IP-ASTP-13-9

    Threshold effects in excited charmed baryon decays

    Get PDF
    Motivated by recent results on charmed baryons from CLEO and FOCUS, we reexamine the couplings of the orbitally excited charmed baryons. Due to its proximity to the [Sigma_c pi] threshold, the strong decays of the Lambda_c(2593) are sensitive to finite width effects. This distorts the shape of the invariant mass spectrum in Lambda_{c1}-> Lambda_c pi^+pi^- from a simple Breit-Wigner resonance, which has implications for the experimental extraction of the Lambda_c(2593) mass and couplings. We perform a fit to unpublished CLEO data which gives M(Lambda_c(2593)) - M(Lambda_c) = 305.6 +- 0.3 MeV and h2^2 = 0.24^{+0.23}_{-0.11}, with h2 the Lambda_{c1}-> Sigma_c pi strong coupling in the chiral Lagrangian. We also comment on the new orbitally excited states recently observed by CLEO.Comment: 9 pages, 3 figure

    Examination of effects of GSK3β phosphorylation, β-catenin phosphorylation, and β-catenin degradation on kinetics of Wnt signaling pathway using computational method

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent experiments have explored effects of activities of kinases other than the well-studied GSK3β, in wnt pathway signaling, particularly at the level of β-catenin. It has also been found that the kinase PKA attenuates β-catenin degradation. However, the effects of these kinases on the level and degradation of β-catenin and the resulting downstream transcription activity remain to be clarified. Furthermore, the effect of GSK3β phosphorylation on the β-catenin level has not been examined computationally. In the present study, the effects of phosphorylation of GSK3β and of phosphorylations and degradation of β-catenin on the kinetics of the wnt signaling pathway were examined computationally.</p> <p>Methods</p> <p>The well-known computational Lee-Heinrich kinetic model of the wnt pathway was modified to include these effects. The rate laws of reactions in the modified model were solved numerically to examine these effects on β-catenin level.</p> <p>Results</p> <p>The computations showed that the β-catenin level is almost linearly proportional to the phosphorylation activity of GSK3β. The dependence of β-catenin level on the phosphorylation and degradation of free β-catenin and downstream TCF activity can be analyzed with an approximate, simple function of kinetic parameters for added reaction steps associated with effects examined, rationalizing the experimental results.</p> <p>Conclusion</p> <p>The phosphorylations of β-catenin by kinases other than GSK3β involve free unphorphorylated β-catenin rather than GSK3β-phosphorylated β-catenin*. In order to account for the observed enhancement of TCF activity, the β-catenin dephosphorylation step is essential, and the kinetic parameters of β-catenin phosphorylation and degradation need to meet a condition described in the main text. These findings should be useful for future experiments.</p

    High-Field Quasiparticle Tunneling in Bi_2Sr_2CaCu_2O_8+delta: Negative Magnetoresistance in the Superconducting State

    Full text link
    We report on the c-axis resistivity rho_c(H) in Bi_2Sr_2CaCu_2O_{8+\delta} that peaks in quasi-static magnetic fields up to 60 T. By suppressing the Josephson part of the two-channel (Cooper pair/quasiparticle) conductivity \sigma_c (H), we find that the negative slope of \rho_c(H) above the peak is due to quasiparticle tunneling conductivity \sigma_q(H) across the CuO_2 layers below H_{c2}. At high fields (a) \sigma_q(H) grows linearly with H, and (b) \rho_c(T) tends to saturate (sigma_c \neq 0) as T->0, consistent with the scattering at the nodes of the d-gap. A superlinear sigma_q(H) marks the normal state above T_c.Comment: 4p., 5 fig. (.eps), will be published in Phys. Rev. Let

    Heavy Quark Solitons: Strangeness and Symmetry Breaking

    Get PDF
    We discuss the generalization of the Callan-Klebanov model to the case of heavy quark baryons. The light flavor group is considered to be SU(3)SU(3) and the limit of heavy spin symmetry is taken. The presence of the Wess-Zumino-Witten term permits the neat development of a picture , at the collective level, of a light diquark bound to a ``heavy" quark with decoupled spin degree of freedom. The consequences of SU(3)SU(3) symmetry breaking are discussed in detail. We point out that the SU(3)SU(3) mass splittings of the heavy baryons essentially measure the ``low energy" physics once more and that the comparison with experiment is satisfactory.Comment: 17 pages, RevTEX. Minor typos corrected and new references adde

    Rescue of DNA damage after constricted migration reveals a mechano-regulated threshold for cell cycle.

    Get PDF
    Migration through 3D constrictions can cause nuclear rupture and mislocalization of nuclear proteins, but damage to DNA remains uncertain, as does any effect on cell cycle. Here, myosin II inhibition rescues rupture and partially rescues the DNA damage marker γH2AX, but an apparent block in cell cycle appears unaffected. Co-overexpression of multiple DNA repair factors or antioxidant inhibition of break formation also exert partial effects, independently of rupture. Combined treatments completely rescue cell cycle suppression by DNA damage, revealing a sigmoidal dependence of cell cycle on excess DNA damage. Migration through custom-etched pores yields the same damage threshold, with ∼4-µm pores causing intermediate levels of both damage and cell cycle suppression. High curvature imposed rapidly by pores or probes or else by small micronuclei consistently associates nuclear rupture with dilution of stiff lamin-B filaments, loss of repair factors, and entry from cytoplasm of chromatin-binding cGAS (cyclic GMP-AMP synthase). The cell cycle block caused by constricted migration is nonetheless reversible, with a potential for DNA misrepair and genome variation

    Low-dimensional iodide perovskite nanocrystals enable efficient red emission

    Get PDF
    We report herein a simple ligand-assisted reprecipitation method at room temperature to synthesize mixed-cation hybrid organic-inorganic perovskite nanocrystals with low structural dimensionality. The emission wavelength of iodide-based perovskites is thus tuned from the near-infrared to the red part of the visible spectrum. While this is mostly achieved in the literature by addition of bromide, we demonstrate here a controllable blueshift of the band gap by varying the chain length of the alkylammonium ligands. Furthermore, an antisolvent washing step was found to be crucial to purify the samples and obtain single-peak photoluminescence with a narrow linewidth. The so-formed nanocrystals exhibit high and stable photoluminescence quantum yields exceeding 90% over 500 hours, making these materials ideal for light-emitting applications
    corecore