322 research outputs found

    The repertoire of mutational signatures in human cancer

    Get PDF
    Somatic mutations in cancer genomes are caused by multiple mutational processes, each of which generates a characteristic mutational signature(1). Here, as part of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium(2) of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA), we characterized mutational signatures using 84,729,690 somatic mutations from 4,645 whole-genome and 19,184 exome sequences that encompass most types of cancer. We identified 49 single-base-substitution, 11 doublet-base-substitution, 4 clustered-base-substitution and 17 small insertion-and-deletion signatures. The substantial size of our dataset, compared with previous analyses(3-15), enabled the discovery of new signatures, the separation of overlapping signatures and the decomposition of signatures into components that may represent associated-but distinct-DNA damage, repair and/or replication mechanisms. By estimating the contribution of each signature to the mutational catalogues of individual cancer genomes, we revealed associations of signatures to exogenous or endogenous exposures, as well as to defective DNA-maintenance processes. However, many signatures are of unknown cause. This analysis provides a systematic perspective on the repertoire of mutational processes that contribute to the development of human cancer.Peer reviewe

    Paral·lelisme entre el mètode Halal i el mètode convencional de sacrifici de xais a l'escorxador

    Get PDF
    Treball presentat a l'assignatura de Deontologia i Veterinària Legal (21223

    Expansion of the BioCyc collection of pathway/genome databases to 160 genomes

    Get PDF
    The BioCyc database collection is a set of 160 pathway/genome databases (PGDBs) for most eukaryotic and prokaryotic species whose genomes have been completely sequenced to date. Each PGDB in the BioCyc collection describes the genome and predicted metabolic network of a single organism, inferred from the MetaCyc database, which is a reference source on metabolic pathways from multiple organisms. In addition, each bacterial PGDB includes predicted operons for the corresponding species. The BioCyc collection provides a unique resource for computational systems biology, namely global and comparative analyses of genomes and metabolic networks, and a supplement to the BioCyc resource of curated PGDBs. The Omics viewer available through the BioCyc website allows scientists to visualize combinations of gene expression, proteomics and metabolomics data on the metabolic maps of these organisms. This paper discusses the computational methodology by which the BioCyc collection has been expanded, and presents an aggregate analysis of the collection that includes the range of number of pathways present in these organisms, and the most frequently observed pathways. We seek scientists to adopt and curate individual PGDBs within the BioCyc collection. Only by harnessing the expertise of many scientists we can hope to produce biological databases, which accurately reflect the depth and breadth of knowledge that the biomedical research community is producing

    Structural and functional properties of genes involved in human cancer

    Get PDF
    BACKGROUND: One of the main goals of cancer genetics is to identify the causative elements at the molecular level leading to cancer. RESULTS: We have conducted an analysis of a set of genes known to be involved in cancer in order to unveil their unique features that can assist towards the identification of new candidate cancer genes. CONCLUSION: We have detected key patterns in this group of genes in terms of the molecular function or the biological process in which they are involved as well as sequence properties. Based on these features we have developed an accurate Bayesian classification model with which human genes have been scored for their likelihood of involvement in cancer

    The road ahead in genetics and genomics

    Get PDF
    In celebration of the 20th anniversary of Nature Reviews Genetics, we asked 12 leading researchers to reflect on the key challenges and opportunities faced by the field of genetics and genomics. Keeping their particular research area in mind, they take stock of the current state of play and emphasize the work that remains to be done over the next few years so that, ultimately, the benefits of genetic and genomic research can be felt by everyone

    Somatic and Germline Mutation Periodicity Follow the Orientation of the DNA Minor Groove around Nucleosomes

    Get PDF
    Mutation rates along the genome are highly variable and influenced by several chromatin features. Here, we addressed how nucleosomes, the most pervasive chromatin structure in eukaryotes, affect the generation of mutations. We discovered that within nucleosomes, the somatic mutation rate across several tumor cohorts exhibits a strong 10 base pair (bp) periodicity. This periodic pattern tracks the alternation of the DNA minor groove facing toward and away from the histones. The strength and phase of the mutation rate periodicity are determined by the mutational processes active in tumors. We uncovered similar periodic patterns in the genetic variation among human and Arabidopsis populations, also detectable in their divergence from close species, indicating that the same principles underlie germline and somatic mutation rates. We propose that differential DNA damage and repair processes dependent on the minor groove orientation in nucleosome-bound DNA contribute to the 10-bp periodicity in AT/CG content in eukaryotic genomes
    corecore