88 research outputs found

    Fostering Conservation via an Integrated Use of Conventional Approaches and High-Throughput SPET Genotyping: A Case Study Using the Endangered Canarian EndemicsSolanum lidiiandS. vespertilio (Solanaceae)

    Full text link
    [EN] Islands provide unique opportunities to integrated research approaches to study evolution and conservation because boundaries are circumscribed, geological ages are often precise, and many taxa are greatly imperiled. We combined morphological and hybridization studies with high-throughput genotyping platforms to streamline relationships in the endangered monophyletic and highly diverse lineage ofSolanumin the Canarian archipelago, where three endemic taxa are currently recognized. Inter-taxa hybridizations were performed, and morphological expression was assessed with a common-garden approach. Using the eggplant Single Primer Enrichment Technology (SPET) platform with 5,093 probes, 74 individuals of three endemic taxa (Solanum lidii,S. vespertiliosubsp.vespertilio, andS. vespertiliosubsp.doramae) were sampled for SNPs. While morphological and breeding studies showed clear distinctions and some continuous variation, inter-taxon hybrids were fertile and heterotic for vigor traits. SPET genotyping revealed 1,421 high-quality SNPs and supported four, not three, distinct taxonomic entities associated with post-emergence geological, ecological and geographic factors of the islands. Given the lack of barriers to hybridization among all the taxa and their molecular differences, great care must be taken in population management. Conservation strategies must take account of the sexual and breeding systems and genotypic distribution among populations to successfully conserve and restore threatened/endangered island taxa, as exemplified bySolanumon the Canary Islands.This work was supported by funds from project DEMIURGO to the Jardin Botanico Canario "Viera y Clavijo" -Unidad Asociada al CSIC of the Cabildo de Gran Canaria. Consumables and genotyping were funded by the Jardin Botanico Canario "Viera y Clavijo" -Unidad Asociada al CSIC. Participation of authors from Universitat Politecnica de Valencia has been partially funded by the European Union's Horizon 2020 Research and Innovation Programme under the Grant Agreement No. 677379 (G2P-SOL project: Linking genetic resources, genomes, and phenotypes of solanaceous crops). PG was grateful to Universitat Politecnica de Valencia and to Japan Society for the Promotion of Science for their respective Postdoctoral Grants [PAID-10-18 and FY2019-P19105 JSPS Postdoctoral Fellowship for Research in Japan (Standard)].Gramazio, P.; Jaén-Molina, R.; Vilanova Navarro, S.; Prohens Tomás, J.; Marrero, Á.; Caujapé-Castells, J.; Anderson, GJ. (2020). Fostering Conservation via an Integrated Use of Conventional Approaches and High-Throughput SPET Genotyping: A Case Study Using the Endangered Canarian EndemicsSolanum lidiiandS. vespertilio (Solanaceae). Frontiers in Plant Science. 11:1-17. https://doi.org/10.3389/fpls.2020.00757S11711Ablay, G., & Hürlimann, M. (2000). Evolution of the north flank of Tenerife by recurrent giant landslides. Journal of Volcanology and Geothermal Research, 103(1-4), 135-159. doi:10.1016/s0377-0273(00)00220-1Ancochea, E., Fuster, J., Ibarrola, E., Cendrero, A., Coello, J., Hernan, F., … Jamond, C. (1990). Volcanic evolution of the island of Tenerife (Canary Islands) in the light of new K-Ar data. Journal of Volcanology and Geothermal Research, 44(3-4), 231-249. doi:10.1016/0377-0273(90)90019-cAnderson, G. J. (1975). The Variation and Evolution of Selected Species of Solanum Section Basarthrum. Brittonia, 27(3), 209. doi:10.2307/2805892Anderson, G. J., Bernardello, G., & Santos-Guerra, A. (2014). Reproductive biology of Solanum vespertilio (Solanaceae), a zygomorphic, heterantherous, enantiostylous, and andromonoecious rare Canary Islands endemic. Plant Systematics and Evolution, 301(4), 1191-1206. doi:10.1007/s00606-014-1143-4Anderson, G. J., & Levine, D. A. (1982). THREE TAXA CONSTITUTE THE SEXES OF A SINGLE DIOECIOUS SPECIES OF SOLANUM. TAXON, 31(4), 667-672. doi:10.2307/1219682Anderson, G. J., & Symon, D. E. (1989). Functional Dioecy and Andromonoecy in Solanum. Evolution, 43(1), 204. doi:10.2307/2409175Baldwin, B. G., & Wagner, W. L. (2010). Hawaiian angiosperm radiations of North American origin. Annals of Botany, 105(6), 849-879. doi:10.1093/aob/mcq052Barchi, L., Acquadro, A., Alonso, D., Aprea, G., Bassolino, L., Demurtas, O., … Giuliano, G. (2019). Single Primer Enrichment Technology (SPET) for High-Throughput Genotyping in Tomato and Eggplant Germplasm. Frontiers in Plant Science, 10. doi:10.3389/fpls.2019.01005Barchi, L., Pietrella, M., Venturini, L., Minio, A., Toppino, L., Acquadro, A., … Rotino, G. L. (2019). A chromosome-anchored eggplant genome sequence reveals key events in Solanaceae evolution. Scientific Reports, 9(1). doi:10.1038/s41598-019-47985-wBRUVO, R., MICHIELS, N. K., D’SOUZA, T. G., & SCHULENBURG, H. (2004). A simple method for the calculation of microsatellite genotype distances irrespective of ploidy level. Molecular Ecology, 13(7), 2101-2106. doi:10.1111/j.1365-294x.2004.02209.xCAMPBELL, K., & DONLAN, C. J. (2005). Feral Goat Eradications on Islands. Conservation Biology, 19(5), 1362-1374. doi:10.1111/j.1523-1739.2005.00228.xCaujapé-Castells, J., Tye, A., Crawford, D. J., Santos-Guerra, A., Sakai, A., Beaver, K., … Jardim, R. (2010). Conservation of oceanic island floras: Present and future global challenges. Perspectives in Plant Ecology, Evolution and Systematics, 12(2), 107-129. doi:10.1016/j.ppees.2009.10.001Chifman, J., & Kubatko, L. (2014). Quartet Inference from SNP Data Under the Coalescent Model. Bioinformatics, 30(23), 3317-3324. doi:10.1093/bioinformatics/btu530Chifman, J., & Kubatko, L. (2015). Identifiability of the unrooted species tree topology under the coalescent model with time-reversible substitution processes, site-specific rate variation, and invariable sites. Journal of Theoretical Biology, 374, 35-47. doi:10.1016/j.jtbi.2015.03.006Corlett, R. T. (2017). A Bigger Toolbox: Biotechnology in Biodiversity Conservation. Trends in Biotechnology, 35(1), 55-65. doi:10.1016/j.tibtech.2016.06.009Crawford, D. J., Moura, M., Borges Silva, L., Mort, M. E., Kerbs, B., Schaefer, H., & Kelly, J. K. (2019). The transition to selfing in Azorean Tolpis (Asteraceae). Plant Systematics and Evolution, 305(4), 305-317. doi:10.1007/s00606-019-01573-7Curto, M., Puppo, P., Kratschmer, S., & Meimberg, H. (2017). Genetic diversity and differentiation patterns in Micromeria from the Canary Islands are congruent with multiple colonization dynamics and the establishment of species syngameons. BMC Evolutionary Biology, 17(1). doi:10.1186/s12862-017-1031-yDanecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., … DePristo, M. A. (2011). The variant call format and VCFtools. Bioinformatics, 27(15), 2156-2158. doi:10.1093/bioinformatics/btr330Del Fabbro, C., Scalabrin, S., Morgante, M., & Giorgi, F. M. (2013). An Extensive Evaluation of Read Trimming Effects on Illumina NGS Data Analysis. PLoS ONE, 8(12), e85024. doi:10.1371/journal.pone.0085024DePristo, M. A., Banks, E., Poplin, R., Garimella, K. V., Maguire, J. R., Hartl, C., … Daly, M. J. (2011). A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nature Genetics, 43(5), 491-498. doi:10.1038/ng.806Escobar García, P., Schönswetter, P., Fuertes Aguilar, J., Nieto Feliner, G., & Schneeweiss, G. M. (2009). Five molecular markers reveal extensive morphological homoplasy and reticulate evolution in the Malva alliance (Malvaceae). Molecular Phylogenetics and Evolution, 50(2), 226-239. doi:10.1016/j.ympev.2008.10.015García-Verdugo, C., Mairal, M., Monroy, P., Sajeva, M., & Caujapé-Castells, J. (2017). The loss of dispersal on islands hypothesis revisited: Implementing phylogeography to investigate evolution of dispersal traits in Periploca (Apocynaceae). Journal of Biogeography, 44(11), 2595-2606. doi:10.1111/jbi.13050GOUDET, J. (2005). hierfstat, a package for r to compute and test hierarchical F-statistics. Molecular Ecology Notes, 5(1), 184-186. doi:10.1111/j.1471-8286.2004.00828.xGramazio, P., Yan, H., Hasing, T., Vilanova, S., Prohens, J., & Bombarely, A. (2019). Whole-Genome Resequencing of Seven Eggplant (Solanum melongena) and One Wild Relative (S. incanum) Accessions Provides New Insights and Breeding Tools for Eggplant Enhancement. Frontiers in Plant Science, 10. doi:10.3389/fpls.2019.01220Ihaka, R., & Gentleman, R. (1996). R: A Language for Data Analysis and Graphics. Journal of Computational and Graphical Statistics, 5(3), 299-314. doi:10.1080/10618600.1996.10474713Jombart, T. (2008). adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics, 24(11), 1403-1405. doi:10.1093/bioinformatics/btn129Kamvar, Z. N., Tabima, J. F., & Grünwald, N. J. (2014). Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ, 2, e281. doi:10.7717/peerj.281Kim, C., Guo, H., Kong, W., Chandnani, R., Shuang, L.-S., & Paterson, A. H. (2016). Application of genotyping by sequencing technology to a variety of crop breeding programs. Plant Science, 242, 14-22. doi:10.1016/j.plantsci.2015.04.016Knaus, B. J., & Grünwald, N. J. (2016). vcfr  : a package to manipulate and visualize variant call format data in R. Molecular Ecology Resources, 17(1), 44-53. doi:10.1111/1755-0998.12549Kouassi, B., Prohens, J., Gramazio, P., Kouassi, A. B., Vilanova, S., Galán-Ávila, A., … Plazas, M. (2016). Development of backcross generations and new interspecific hybrid combinations for introgression breeding in eggplant (Solanum melongena). Scientia Horticulturae, 213, 199-207. doi:10.1016/j.scienta.2016.10.039Lischer, H. E. L., & Excoffier, L. (2011). PGDSpider: an automated data conversion tool for connecting population genetics and genomics programs. Bioinformatics, 28(2), 298-299. doi:10.1093/bioinformatics/btr642Mairal, M., Caujapé-Castells, J., Pellissier, L., Jaén-Molina, R., Álvarez, N., Heuertz, M., & Sanmartín, I. (2018). A tale of two forests: ongoing aridification drives population decline and genetic diversity loss at continental scale in Afro-Macaronesian evergreen-forest archipelago endemics. Annals of Botany, 122(6), 1005-1017. doi:10.1093/aob/mcy107Mairal, M., Sanmartín, I., Aldasoro, J. J., Culshaw, V., Manolopoulou, I., & Alarcón, M. (2015). Palaeo-islands as refugia and sources of genetic diversity within volcanic archipelagos: the case of the widespread endemicCanarina canariensis(Campanulaceae). Molecular Ecology, 24(15), 3944-3963. doi:10.1111/mec.13282Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal, 17(1), 10. doi:10.14806/ej.17.1.200MOYA, Ó., CONTRERAS-DÍAZ, H. G., OROMÍ, P., & JUAN, C. (2004). Genetic structure, phylogeography and demography of two ground-beetle species endemic to the Tenerife laurel forest (Canary Islands). Molecular Ecology, 13(10), 3153-3167. doi:10.1111/j.1365-294x.2004.02316.xNeal, P. R., & Anderson, G. J. (2005). Are ?mating systems? ?breeding systems? of inconsistent and confusing terminology in plant reproductive biology? or is it the other way around? Plant Systematics and Evolution, 250(3-4), 173-185. doi:10.1007/s00606-004-0229-9Nei, M. (1972). Genetic Distance between Populations. The American Naturalist, 106(949), 283-292. doi:10.1086/282771Nei, M. (1973). Analysis of Gene Diversity in Subdivided Populations. Proceedings of the National Academy of Sciences, 70(12), 3321-3323. doi:10.1073/pnas.70.12.3321Nogales, M., Heleno, R., Rumeu, B., González‐Castro, A., Traveset, A., Vargas, P., … Field, R. (2016). Seed‐dispersal networks on the C anaries and the G alápagos archipelagos: interaction modules as biogeographical entities. Global Ecology and Biogeography, 25(7), 912-922. doi:10.1111/geb.12315Otto, R., Garzón-Machado, V., del Arco, M., Fernández-Lugo, S., de Nascimento, L., Oromí, P., … Fernández-Palacios, J. M. (2017). Unpaid extinction debts for endemic plants and invertebrates as a legacy of habitat loss on oceanic islands. Diversity and Distributions, 23(9), 1031-1041. doi:10.1111/ddi.12590Paradis, E., & Schliep, K. (2018). ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics, 35(3), 526-528. doi:10.1093/bioinformatics/bty633Plazas, M., Vilanova, S., Gramazio, P., Rodríguez-Burruezo, A., Fita, A., Herraiz, F. J., … Prohens, J. (2016). Interspecific Hybridization between Eggplant and Wild Relatives from Different Genepools. Journal of the American Society for Horticultural Science, 141(1), 34-44. doi:10.21273/jashs.141.1.34Price, J. P., Otto, R., Menezes de Sequeira, M., Kueffer, C., Schaefer, H., Caujapé-Castells, J., & Fernández-Palacios, J. M. (2018). Colonization and diversification shape species-area relationships in three Macaronesian archipelagos. Journal of Biogeography, 45(9), 2027-2039. doi:10.1111/jbi.13396Prohens, J., Anderson, G. J., Herraiz, F. J., Bernardello, G., Santos-Guerra, A., Crawford, D., & Nuez, F. (2007). Genetic diversity and conservation of two endangered eggplant relatives (Solanum vespertilio Aiton and Solanum lidii Sunding) endemic to the Canary Islands. Genetic Resources and Crop Evolution, 54(3), 451-464. doi:10.1007/s10722-006-9174-5Puppo, P., Curto, M., Gusmão-Guedes, J., Cochofel, J., Pérez de Paz, P. L., Bräuchler, C., & Meimberg, H. (2015). Molecular phylogenetics of Micromeria (Lamiaceae) in the Canary Islands, diversification and inter-island colonization patterns inferred from nuclear genes. Molecular Phylogenetics and Evolution, 89, 160-170. doi:10.1016/j.ympev.2015.04.017Puppo, P., Curto, M., & Meimberg, H. (2016). Genetic structure ofMicromeria(Lamiaceae) in Tenerife, the imprint of geological history and hybridization on within-island diversification. Ecology and Evolution, 6(11), 3443-3460. doi:10.1002/ece3.2094Raj, A., Stephens, M., & Pritchard, J. K. (2014). fastSTRUCTURE: Variational Inference of Population Structure in Large SNP Data Sets. Genetics, 197(2), 573-589. doi:10.1534/genetics.114.164350Rumeu, B., Vargas, P., Jaén-Molina, R., Nogales, M., & Caujapé-Castells, J. (2014). Phylogeography and genetic structure of the threatened CanarianJuniperus cedrus(Cupressaceae). Botanical Journal of the Linnean Society, 175(3), 376-394. doi:10.1111/boj.12172Särkinen, T., Bohs, L., Olmstead, R. G., & Knapp, S. (2013). A phylogenetic framework for evolutionary study of the nightshades (Solanaceae): a dated 1000-tip tree. BMC Evolutionary Biology, 13(1), 214. doi:10.1186/1471-2148-13-214Scaglione, D., Pinosio, S., Marroni, F., Di Centa, E., Fornasiero, A., Magris, G., … Morgante, M. (2019). Single primer enrichment technology as a tool for massive genotyping: a benchmark on black poplar and maize. Annals of Botany, 124(4), 543-551. doi:10.1093/aob/mcz054Scheben, A., Batley, J., & Edwards, D. (2017). Genotyping-by-sequencing approaches to characterize crop genomes: choosing the right tool for the right application. Plant Biotechnology Journal, 15(2), 149-161. doi:10.1111/pbi.12645Sperling, F. N., Washington, R., & Whittaker, R. J. (2004). Future Climate Change of the Subtropical North Atlantic: Implications for the Cloud Forests of Tenerife. Climatic Change, 65(1/2), 103-123. doi:10.1023/b:clim.0000037488.33377.bfThomson, M. J. (2014). High-Throughput SNP Genotyping to Accelerate Crop Improvement. Plant Breeding and Biotechnology, 2(3), 195-212. doi:10.9787/pbb.2014.2.3.195TRUSTY, J. L., OLMSTEAD, R. G., SANTOS-GUERRA, A., SÁ-FONTINHA, S., & FRANCISCO-ORTEGA, J. (2005). Molecular phylogenetics of the Macaronesian-endemic genus Bystropogon (Lamiaceae): palaeo-islands, ecological shifts and interisland colonizations. Molecular Ecology, 14(4), 1177-1189. doi:10.1111/j.1365-294x.2005.02487.xVan den Bogaard, P. (2013). The origin of the Canary Island Seamount Province - New ages of old seamounts. Scientific Reports, 3(1). doi:10.1038/srep02107Warren, B. H., Simberloff, D., Ricklefs, R. E., Aguilée, R., Condamine, F. L., Gravel, D., … Thébaud, C. (2015). Islands as model systems in ecology and evolution: prospects fifty years after MacArthur-Wilson. Ecology Letters, 18(2), 200-217. doi:10.1111/ele.12398Watts, A. B., & Masson, D. G. (1995). A giant landslide on the north flank of Tenerife, Canary Islands. Journal of Geophysical Research: Solid Earth, 100(B12), 24487-24498. doi:10.1029/95jb02630Weigelt, P., Daniel Kissling, W., Kisel, Y., Fritz, S. A., Karger, D. N., Kessler, M., … Kreft, H. (2015). Global patterns and drivers of phylogenetic structure in island floras. Scientific Reports, 5(1). doi:10.1038/srep12213Whalen, M. D., & Anderson, G. J. (1981). DISTRIBUTION OF GAMETOPHYTIC SELF‐INCOMPATIBILITY AND INFRAGENERIC CLASSIFICATION IN SOLANUM. TAXON, 30(4), 761-767. doi:10.2307/1220077Wickham, H. (2016). ggplot2. Use R! doi:10.1007/978-3-319-24277-4Willing, E.-M., Dreyer, C., & van Oosterhout, C. (2012). Estimates of Genetic Differentiation Measured by FST Do Not Necessarily Require Large Sample Sizes When Using Many SNP Markers. PLoS ONE, 7(8), e42649. doi:10.1371/journal.pone.004264

    Multiplexed-shotgun-genotyping data resolve phylogeny within a very recently derived insular lineage

    Get PDF
    Premise of the study: Endemic plants on oceanic islands have long served as model systems for studying patterns and processes of evolution. However, phylogenetic studies of island plants frequently illustrate a decoupling of molecular divergence and ecological/morphological diversity, resulting in phylogenies lacking the resolution required to interpret patterns of evolution in a phylogenetic context. The current study uses the primarily Macaronesian fl owering plant genus Tolpis to illustrate the utility of multiplexed shotgun genotyping (MSG) for resolving relationships at relatively deep (among archipelagos) and very shallow (within archipelagos) nodes in this small, yet diverse insular plant lineage that had not been resolved with other molecular markers. • Methods: Genomic libraries for 27 accessions of Macaronesian Tolpis were generated for genotyping individuals using MSG, a form of reduced-representation sequencing, similar to restriction-site-associated DNA markers (RADseq). The resulting data fi les were processed using the program pyRAD, which clusters MSG loci within and between samples. Phylogenetic analyses of the aligned data matrix were conducted using RAxML. • Key results: Analysis of MSG data recovered a highly resolved phylogeny with generally strong support, including the fi rst robust inference of relationships within the highly diverse Canary Island clade of Tolpis . • Conclusions: The current study illustrates the utility of MSG data for resolving relationships in lineages that have undergone recent, rapid diversifi cation resulting in extensive ecological and morphological diversity. We suggest that a similar approach may prove generally useful for other rapid plant radiations where resolving phylogeny has been diffi cult.info:eu-repo/semantics/publishedVersio

    The potential role of hybridization in diversification and speciation in an insular plant lineage: insights from synthetic interspecific hybrids

    Get PDF
    Hybridization is recognized as an important process in plant evolution, and this may be particularly true for island plants where several biotic and abiotic factors facilitate interspecific hybridization. Although rarely done, experimental studies could provide insights into the potential of natural hybridization to generate diversity when species come into contact in the dynamic island setting. The potential of hybridization to generate morphological variation was analysed within and among 12 families (inbred lines) of an F4 hybrid generation between two species of Tolpis endemic to the Canary Islands. Combinations of characters not seen in the parents were present in hybrids. Several floral and vegetative characters were transgressive relative to their parents. Morphometric studies of floral, vegetative and fruit characters revealed that several F4 families were phenotypically distinct from other families, and from their parents. The study demonstrates that morphologically distinct pollen-fertile lines, potentially worthy of taxonomic recognition if occurring in nature, can be generated in four generations. The ability of the hybrid lines to set self-seed would reduce gene flow among the lines, and among the hybrids and their parental species. Selfing would also facilitate the fixation of characters within each of the lines. Overall, the results show the considerable potential of hybridization for generating diversity and distinct phenotypes in island lineages

    Diversification of Aeonium Species Across Macaronesian Archipelagos: Correlations Between Genome-Size Variation and Their Conservation Status

    Get PDF
    The rich endemic flora of the Macaronesian Islands places these oceanic archipelagos among the top biodiversity hotspots worldwide. The radiations that have determined the evolution of many of these insular lineages resulted in a wealth of endemic species, many of which occur in a wide range of ecological niches, but show small distribution areas in each of them. Aeonium (Crassulaceae) is the most speciose lineage in the Canary Islands (ca. 40 taxa), and as such can be considered a good model system to understand the diversification dynamics of oceanic endemic floras. The present study aims to assess the genome size variation within Aeonium distribution, i.e., the Macaronesian archipelagos of Madeira, Canaries and Cabo Verde, and analyse it together with information on distribution (i.e., geography and conservation status), taxonomy (i.e., sections), morphological traits (i.e., growth-form), geological data (i.e., island’s geological age), and environmental variables (i.e., altitude, annual mean temperature, and precipitation). Based on extensive fieldwork, a cytogeographic screening of 24 Aeonium species was performed. The conservation status of these species was assessed based on IUCN criteria. 61% of the taxa were found to be threatened (4% Endangered and 57% Vulnerable). For the first time, the genome size of a comprehensive sample of Aeonium across the Macaronesian archipelagos was estimated, and considerable differences in Cx-values were found, ranging from0.984 pg (A. dodrantale) to 2.768 pg (A. gorgoneum). An overall positive correlation between genome size and conservation status was found, with the more endangered species having the larger genomes on average. However, only slight relationships were found between genome size, morphological traits, and environmental variables. These results underscore the importance of characterizing the cytogenomic diversity and conservation status of endemic plants found in Macaronesian Islands, providing, therefore, new data to establish conservation priorities.info:eu-repo/semantics/publishedVersio

    Towards a glacial-sensitive model of island biogeography

    Get PDF
    Although the role that Pleistocene glacial cycles have played in shaping the present biota of oceanic islands world-wide has long been recognized, their geographical, biogeographical and ecological implications have not yet been fully incorporated within existing biogeographical models. Here we summarize the different types of impacts that glacial cycles may have had on oceanic islands, including cyclic changes in climate, shifts in marine currents and wind regimes and, especially, cycles of sea level change. The latter have affected geographical parameters such as island area, isolation and elevation. They have also influenced the configurations of archipelagos via island fusion and fission, and cycles of seamount emergence and submergence. We hypothesize that these sea level cycles have had significant impacts on the biogeographical processes shaping oceanic island biotas, influencing the rates and patterns of immigration and extinction and hence species richness. Here we provide a first step toward the development of a glacial-sensitive model of island biogeography, representing the tentative temporal evolution of those biogeographical parameters during the last glacial cycle. From this reasoning we attempt to derive predictions regarding the imprint of sea level cycles on genetic, demographic or biogeographical patterns within remote island biotas

    NEXTGENDEM: información genética, geoespacial y supercomputación para mejorar la gestión de especies y espacios en Macaronesia

    Get PDF
    Project NEXTGENDEM (MAC2/4.6d/236, https://lupus.itccanarias.org/nextgendem/es/) complements multiple research disciplines to provide verified and validated scientific data that help managers make more informed conservation decisions. As a result of the mobilization and enrichment of the sample and data banks of the Jardín Botánico Canario “Viera y Clavijo” -UA CSIC and the Instituto Nacional de Investigação e Desenvolvimento Agrário de Cabo Verde, tools will be developed for the estimation of phylogenetic diversity of the terrestrial endemic flora of these islands, the approximation to the molecular taxonomic identification of samples, phylogenetic reconstruction, and territorial analysis merging biotic and abiotic variables. Our main objective is to organise, analyse and apply the most relevant scientific knowledge to guide in situ and ex situ actions to improve the conservation status of the flora of Gran Canaria (Canary Islands) and Santiago (Cape Verde), although we plan to incorporate other Macaronesian territories in future projectsEl proyecto NEXTGENDEM (MAC2/4.6d/236, https://lupus.itccanarias.org/nextgendem/es/) complementa múltiples disciplinas de investigación para proporcionar datos científicos contrastados y validados que faciliten a los gestores la toma de decisiones de conservación más informadas. A consecuencia de la movilización y el enriquecimiento de los bancos de muestras y datos del Jardín Botánico Canario ¿Viera y Clavijo¿ ¿ UA CSIC y del Instituto Nacional de Investigação e Desenvolvimento Agrário de Cabo Verde, se pondrán a punto herramientas para la estimación de la diversidad filogenética de la flora terrestre insular, la aproximación a la identificación taxonómica molecular de muestras, la reconstrucción de filogenias, y el análisis territorial integrado con variables bióticas y abióticas. Nuestro objetivo principal es organizar, analizar y aplicar el conocimiento científico más relevante para guiar actuaciones in situ y ex situ que mejoren el estado de conservación de las floras de Gran Canaria (Islas Canarias) y Santiago (Cabo Verde), aunque prevemos incorporar otros territorios macaronésicos en futuros proyecto

    Historical Isolation versus Recent Long-Distance Connections between Europe and Africa in Bifid Toadflaxes (Linaria sect. Versicolores)

    Get PDF
    Background: Due to its complex, dynamic and well-known paleogeography, the Mediterranean region provides an ideal framework to study the colonization history of plant lineages. The genus Linaria has its diversity centre in the Mediterranean region, both in Europe and Africa. The last land connection between both continental plates occurred during the Messinian Salinity Crisis, in the late Miocene (5.96 to 5.33 Ma). Methodology/Principal Findings: We analyzed the colonization history of Linaria sect. Versicolores (bifid toadflaxes), which includes c. 22 species distributed across the Mediterranean, including Europe and Africa. Two cpDNA regions (rpl32-trnL UAG and trnK-matK) were sequenced from 66 samples of Linaria. We conducted phylogenetic, dating, biogeographic and phylogeographic analyses to reconstruct colonization patterns in space and time. Four major clades were found: two of them exclusively contain Iberian samples, while the other two include northern African samples together with some European samples. The bifid toadflaxes have been split in African and European clades since the late Miocene, and most lineage and speciation differentiation occurred during the Pliocene and Quaternary. We have strongly inferred four events of post-Messinian colonization following long-distance dispersal from northern Africa to the Iberian Peninsula, Sicily and Greece. Conclusions/Significance: The current distribution of Linaria sect. Versicolores lineages is explained by both ancien

    Surviving in isolation: genetic variation, bottlenecks and reproductive strategies in the Canarian endemic Limonium macrophyllum (Plumbaginaceae)

    Get PDF
    Oceanic archipelagos are typically rich in endemic taxa, because they offer ideal conditions for diversification and speciation in isolation. One of the most remarkable evolutionary radiations on the Canary Islands comprises the 16 species included in Limonium subsection Nobiles, all of which are subject to diverse threats, and legally protected. Since many of them are single-island endemics limited to one or a few populations, there exists a risk that a loss of genetic variation might limit their longterm survival. In this study, we used eight newly developed microsatellite markers to characterize the levels of genetic variation and inbreeding in L. macrophyllum, a species endemic to the North-east of Tenerife that belongs to Limonium subsection Nobiles. We detected generally low levels of genetic variation over all populations (HT = 0.363), and substantial differentiation among populations (FST = 0.188;RST = 0.186) coupled with a negligible degree of inbreeding (F = 0.042). Obligate outcrossing may have maintained L. macrophyllum relatively unaffected by inbreeding despite the species’ limited dispersal ability and the genetic bottlenecks likely caused by a prolonged history of grazing. Although several factors still constitute a risk for the conservation of L. macrophyllum, the lack of inbreeding and the recent positive demographic trends observed in the populations of this species are factors that favour its future persistence

    Breeding systems in Tolpis (Asteraceae) in the Macaronesian islands: the Azores, Madeira and the Canaries

    Get PDF
    Plants on oceanic islands often originate from self-compatible (SC) colonizers capable of seed set by self fertilization. This fact is supported by empirical studies, and is rooted in the hypothesis that one (or few) individuals could find a sexual population, whereas two or more would be required if the colonizers were self-incompatible (SI). However, a SC colonizer would have lower heterozygosity than SI colonizers, which could limit radiation and diver sification of lineages following establishment. Limited evidence suggests that several species-rich island lineages in the family Asteraceae originated from SI colonizers with some ‘‘leakiness’’ (pseudo-self-compatibility, PSC) such that some self-seed could be produced. This study of Tolpis (Asteraceae) in Macaronesia provides first reports of the breeding system in species from the Azores and Madeira, and additional insights into variation in Canary Islands. Tolpis from the Azores and Madeira are predominately SI but with PSC. This study suggests that the breeding sys tems of the ancestors were either PSC, possibly from a single colonizer, or from SI colonizers by multiple dis seminules either from a single or multiple dispersals. Long distance colonists capable of PSC combine the advantages of reproductive assurance (via selfing) in the establishment of sexual populations from even a single colonizer with the higher heterozygosity resulting from its origin from an outcrossed source population. Evolution of Tolpis on the Canaries and Madeira has generated diversity in breeding systems, including the origin of SC. Macaronesian Tolpis is an excellent system for studying breeding system evolution in a small, diverse lineage.info:eu-repo/semantics/publishedVersio

    Outlier SNPs detect weak regional structure against a background of genetic homogeneity in the Eastern Rock Lobster, Sagmariasus verreauxi

    Get PDF
    Genetic differentiation is characteristically weak in marine species making assessments of population connectivity and structure difficult. However, the advent of genomic methods has increased genetic resolution, enabling studies to detect weak, but significant population differentiation within marine species. With an increasing number of studies employing high resolution genome-wide techniques, we are realising that the connectivity of marine populations is often complex and quantifying this complexity can provide an understanding of the processes shaping marine species genetic structure and to inform long-term, sustainable management strategies. This study aims to assess the genetic structure, connectivity, and local adaptation of the Eastern Rock Lobster (Sagmariasus verreauxi), which has a maximum pelagic larval duration of 12 months and inhabits both subtropical and temperate environments. We used 645 neutral and 15 outlier SNPs to genotype lobsters collected from the only two known breeding populations and a third episodic population—encompassing S. verreauxi's known range. Through examination of the neutral SNP panel, we detected genetic homogeneity across the three regions, which extended across the Tasman Sea encompassing both Australian and New Zealand populations. We discuss differences in neutral genetic signature of S. verreauxi and a closely related, co-distributed rock lobster, Jasus edwardsii, determining a regional pattern of genetic disparity between the species, which have largely similar life histories. Examination of the outlier SNP panel detected weak genetic differentiation between the three regions. Outlier SNPs showed promise in assigning individuals to their sampling origin and may prove useful as a management tool for species exhibiting genetic homogeneity
    corecore