1,037 research outputs found

    Importance of Shear in the bcc-to-hcp Transformation in Iron

    Get PDF
    Iron shows a pressure-induced martensitic phase transformation from the ground state ferromagnetic bcc phase to a nonmagnetic hcp phase at ≈13 GPa. The exact transformation pressure (TP) and pathway are not known. Here we present a multiscale model containing a quantum-mechanics-based multiwell energy function accounting for the bcc and hcp phases of Fe and a construction of kinematically compatible and equilibrated mixed phases. This model suggests that shear stresses have a significant influence on the bcc↔hcp transformation. In particular, the presence of modest shear accounts for the scatter in measured TPs. The formation of mixed phases also provides an explanation for the observed hysteresis in TP

    Analytic binary alloy volume-concentration relations and the deviation from Zen`s law

    Full text link
    Alloys expand or contract as concentrations change, and the resulting relationship between atomic volume and alloy content is an important property of the solid. While a well-known approximation posits that the atomic volume varies linearly with concentration (Zen`s law), the actual variation is more complicated. Here we use an apparent size of the solute (solvent) atom and the elasticity to derive explicit analytical expressions for the atomic volume of binary solid alloys. Two approximations, continuum and terminal, are proposed. Deviations from Zen`s law are studied for 22 binary alloy systems

    Exploring the Contribution of Parental Perceptions to Childhood Anxiety

    Get PDF
    Parental rearing practices such as over-involvement are associated with childhood anxiety; however, little is known about the contribution of parental perceptions to child anxiety. This study explores the relationship between maternal and paternal perceptions of parenting and childhood anxiety. The perceived rearing behaviors and parental sense of competence (i.e., satisfaction and efficacy) of the parents of anxious children (n = 59) were compared with those of a non-clinical control sample (n = 44). In line with the findings from the literature that addresses externalizing disorders, parental sense of competence was significantly associated with childhood outcomes. Logistical regression suggested that paternal efficacy beliefs, acceptance, and maternal satisfaction were associated with an absence of clinical anxiety and lower levels of anxiety symptoms in children. Parental perceptions may thus provide an important area for understanding childhood anxiety

    Usability and Usage of Interactive Features in an Online Ebook for CS Teachers

    Get PDF
    There are too few secondary school computing teachers to meet international needs for growing secondary school computing education. Our group has created an ebook to help prepare secondary teachers to teach the programming and big data concepts in the new AP Computer Science Principles course. The ebook was designed using principles from educational psychology, specifically worked examples and cognitive load. The ebook interleaves worked examples and interactive practice activities, which we believe will lead to more efficient and effective learning than more typical approaches to learning programming. This paper reports the results from initial studies of our ebook. First, we conducted a usability study comparing three different ebook platforms. Next, we conducted a study of teacher use of the ebook. Ten teachers worked through the first eight chapters of the ebook at their own pace. Five of the ten teachers completed the first eight chapters which is a 50% completion rate. Significantly, teachers who used more of the interactive features in the ebook did better on the post-tests and reported higher confidence in their ability to teach the material than teachers who used few of the interactive features

    An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker

    Get PDF
    We present an estimate of net CO2 exchange between the terrestrial biosphere and the atmosphere across North America for every week in the period 2000 through 2005. This estimate is derived from a set of 28,000 CO2 mole fraction observations in the global atmosphere that are fed into a state-of-the-art data assimilation system for CO2 called CarbonTracker. By design, the surface fluxes produced in CarbonTracker are consistent with the recent history of CO2 in the atmosphere and provide constraints on the net carbon flux independent from national inventories derived from accounting efforts. We find the North American terrestrial biosphere to have absorbed –0.65 PgC/yr (1 petagram = 10^15 g; negative signs are used for carbon sinks) averaged over the period studied, partly offsetting the estimated 1.85 PgC/yr release by fossil fuel burning and cement manufacturing. Uncertainty on this estimate is derived from a set of sensitivity experiments and places the sink within a range of –0.4 to –1.0 PgC/yr. The estimated sink is located mainly in the deciduous forests along the East Coast (32%) and the boreal coniferous forests (22%). Terrestrial uptake fell to –0.32 PgC/yr during the large-scale drought of 2002, suggesting sensitivity of the contemporary carbon sinks to climate extremes. CarbonTracker results are in excellent agreement with a wide collection of carbon inventories that form the basis of the first North American State of the Carbon Cycle Report (SOCCR), to be released in 2007. All CarbonTracker results are freely available at http://carbontracker.noaa.gov

    Mass-radius relationships for exoplanets

    Full text link
    For planets other than Earth, interpretation of the composition and structure depends largely on comparing the mass and radius with the composition expected given their distance from the parent star. The composition implies a mass-radius relation which relies heavily on equations of state calculated from electronic structure theory and measured experimentally on Earth. We lay out a method for deriving and testing equations of state, and deduce mass-radius and mass-pressure relations for key materials whose equation of state is reasonably well established, and for differentiated Fe/rock. We find that variations in the equation of state, such as may arise when extrapolating from low pressure data, can have significant effects on predicted mass- radius relations, and on planetary pressure profiles. The relations are compared with the observed masses and radii of planets and exoplanets. Kepler-10b is apparently 'Earth- like,' likely with a proportionately larger core than Earth's, nominally 2/3 of the mass of the planet. CoRoT-7b is consistent with a rocky mantle over an Fe-based core which is likely to be proportionately smaller than Earth's. GJ 1214b lies between the mass-radius curves for H2O and CH4, suggesting an 'icy' composition with a relatively large core or a relatively large proportion of H2O. CoRoT-2b is less dense than the hydrogen relation, which could be explained by an anomalously high degree of heating or by higher than assumed atmospheric opacity. HAT-P-2b is slightly denser than the mass-radius relation for hydrogen, suggesting the presence of a significant amount of matter of higher atomic number. CoRoT-3b lies close to the hydrogen relation. The pressure at the center of Kepler-10b is 1.5+1.2-1.0 TPa. The central pressure in CoRoT-7b is probably close to 0.8TPa, though may be up to 2TPa.Comment: Added more recent exoplanets. Tidied text and references. Added extra "rock" compositions. Responded to referee comment
    • …
    corecore