254 research outputs found

    Relaxation and derelaxation of pure and hydrogenated amorphous silicon during thermal annealing experiments

    Get PDF
    The structural relaxation of pure amorphous silicon (a-Si) and hydrogenated amorphous silicon (a-Si:H) materials, that occurs during thermal annealing experiments, has been analysed by Raman spectroscopy and differential scanning calorimetry. Unlike a-Si, the heat evolved from a-Si:H cannot be explained by relaxation of the Si-Si network strain, but it reveals a derelaxation of the bond angle strain. Since the state of relaxation after annealing is very similar for pure and hydrogenated materials, our results give strong experimental support to the predicted configurational gap between a-Si and crystalline silicon.Comment: 15 pages, 3 figures, 1 table to be published in Applied Physics Letter

    Medicamentos e ingestión de alcohol: estudio del almotriptan

    Get PDF
    Diversos investigadors de l'Hospital Universitari Germans Trias i Pujol i de l'empresa farmacèutica Laboratorios Almirall han dut a terme un estudi per comprovar quin és l'efecte terapèutic de l'almotriptan -un fàrmac utilitzat en el tractament de les crisis de migranya- en relació al consum d'alcohol. Els resultats obtinguts en la recerca indiquen que no és necessari modificar la dosificació del medicament quan s'administra en un pacient en què la crisi de migranya s'ha produït després de la presa d'alcohol.Diversos investigadores del Hospital Universitario Germans Trias i Pujol y de la empresa farmacéutica Laboratorios Almirall han llevado a cabo un estudio para comprobar cuál es el efecto terapéutico del almotriptan - un fármaco utilizado en el tratamiento de las crisis de migraña- en relación al consumo de alcohol. Los resultados obtenidos en la investigación indican que no es necesario modificar la dosificación del medicamento cuando se administra en un paciente en que la crisis de migraña se ha producido después de la ingestión de alcohol

    Quantification of the bond-angle dispersion by Raman spectroscopy and the strain energy of amorphous silicon

    Get PDF
    A thorough critical analysis of the theoretical relationships between the bond-angle dispersion in a-Si and the width of the transverse optical (TO) Raman peak is presented. It is shown that the discrepancies between them are drastically reduced when unified definitions for these magnitudes are used. This reduced dispersion in the predicted values of the bond-angle dispersion together with the broad agreement with its scarce direct determinations is then used to analyze the strain energy in partially relaxed pure a-Si. It is concluded that defect annihilation does not contribute appreciably to reducing the a-Si energy during structural relaxation. In contrast, it can account for half of the crystallization energy, which can be as low as 7 kJ/mol in defect-free a-Si.Comment: 24 pages, 5 figures, accepted for publication in J. Appl. Phy

    Optical Modeling of Microcrystalline Silicon Deposited by Plasma-Enhanced Chemical Vapor Deposition on Low-Cost Iron-Nickel Substrates for Photovoltaic Applications

    Get PDF
    AbstractThis paper deals with the optical modeling of thin hydrogenated microcrystalline silicon films grown on flexible low-cost iron-nickel alloy substrates by low-temperature (175°C) plasma-enhanced chemical vapor deposition. This material serves as the absorber in solar cells and hence it has direct impact on the resulting solar cell performance. Since the crystallinity and the material quality of hydrogenated microcrystalline silicon films evolve during the growth, the deposited film is inhomogeneous, with a rather complex structure. Real-time spectroscopic ellipsometry has been used to trace the changing composition of the films. In-situ ellipsometric data taken for photon energies from 2.8 to 4.5eV every 50seconds enabled us to study the evolution of the monocrystalline silicon fraction of the hydrogenated microcrystalline silicon films

    Unravelling a simple method for the low temperature synthesis of silicon nanocrystals and monolithic nanocrystalline thin films

    Get PDF
    In this work, we present new results on the plasma processing and structure of hydrogenated polymorphous silicon (pm-Si:H) thin films. pm-Si:H thin films consist of a low volume fraction of silicon nanocrystals embedded in a silicon matrix with medium range order, and they possess this morphology as a significant contribution to their growth comes from the impact on the substrate of silicon clusters and nanocrystals synthesized in the plasma. Quadrupole mass spectrometry, ion flux measurements, and material characterization by transmission electron microscopy (TEM) and atomic force microscopy all provide insight on the contribution to the growth by silicon nanocrystals during PECVD deposition. In particular, cross-section TEM measurements show for the first time that the silicon nanocrystals are uniformly distributed across the thickness of the pm-Si:H film. Moreover, parametric studies indicate that the best pm-Si:H material is obtained at the conditions after the transition between a pristine plasma and one containing nanocrystals, namely a total gas pressure around 2 Torr and a silane to hydrogen ratio between 0.05 to 0.1. From a practical point of view these conditions also correspond to the highest deposition rate achievable for a given RF power and silane flow rate.ope

    Growth study of indium-catalyzed silicon nanowires by plasma enhanced chemical vapor deposition

    Get PDF
    Indium was used as a catalyst for the synthesis of silicon nanowires in a plasma enhanced chemical vapor deposition reactor. In order to foster the catalytic activity of indium, the indium droplets had to be exposed to a hydrogen plasma prior to nanowire growth in a silane plasma. The structure of the nanowires was investigated as a function of the growth conditions by electron microscopy and Raman spectroscopy. The nanowires were found to crystallize along the , or growth direction. When growing on the and directions, they revealed a similar crystal quality and the presence of a high density of twins along the {111} planes. The high density and periodicity of these twins lead to the formation of hexagonal domains inside the cubic structure. The corresponding Raman signature was found to be a peak at 495 cm−1, in agreement with previous studies. Finally, electron energy loss spectroscopy indicates an occasional migration of indium during growt

    Can the crystallization rate be independent from the crystallization enthalpy? The case of amorphous silicon

    Get PDF
    The crystallization enthalpy measured in a large series of amorphous silicon (a-Si) materials varies within a factor of 2 from sample to sample (Kail et al 2011 Phys. Status Solidi RRL 5 361). According to the classical theory of nucleation, this variation should produce large differences in the crystallization kinetics leading to crystallization temperatures and activation energies exceeding 550 C and 1.7 eV, respectively, the ‘standard’ values measured for a-Si obtained by self-implantation. In contrast, the observed crystallization kinetics is very similar for all the samples studied and has no correlation with the crystallization enthalpy. This discrepancy has led us to propose that crystallization in a-Si begins in microscopic domains that are almost identical in all samples, independently of their crystallization enthalpy. Probably the existence of microscopic inhomogeneities also plays a crucial role in the crystallization kinetics of other amorphous materials and glasses

    Gallium assisted plasma enhanced chemical vapor deposition of silicon nanowires

    Get PDF
    Silicon nanowires have been grown with gallium as catalyst by plasma enhanced chemical vapor deposition. The morphology and crystalline structure has been studied by electron microscopy and Raman spectroscopy as a function of growth temperature and catalyst thickness. We observe that the crystalline quality of the wires increases with the temperature at which they have been synthesized. The crystalline growth direction has been found to vary between and , depending on both the growth temperature and catalyst thickness. Gallium has been found at the end of the nanowires, as expected from the vapor-liquid-solid growth mechanism. These results represent good progress towards finding alternative catalysts to gold for the synthesis of nanowires
    corecore