1,433 research outputs found

    T Pyxidis: The First Cataclysmic Variable with a Collimated Jet

    Get PDF
    We present the first observational evidence for a collimated jet in a cataclysmic variable system; the recurrent nova T Pyxidis. Optical spectra show bipolar components of Hα\alpha with velocities 1400km/s\sim 1400 km/s, very similar to those observed in the supersoft X-ray sources and in SS 433. We argue that a key ingredient of the formation of jets in the supersoft X-ray sources and T Pyx (in addition to an accretion disk threaded by a vertical magnetic field), is the presence of nuclear burning on the surface of the white dwarf.Comment: 10 pages 2 figures to appear in ApJ Letter

    A Radial Velocity Study of CTCV J1300-3052

    Get PDF
    We present time-resolved spectroscopy of the eclipsing, short period cataclysmic variable CTCV J1300-3052. Using absorption features from the secondary star, we determine the radial velocity semi-amplitude of the secondary star to be K2 = 378 \pm 6 km/s, and its projected rotational velocity to be v sin i = 125 \pm 7 km/s. Using these parameters and Monte Carlo techniques, we obtain masses of M1 = 0.79 \pm 0.05 MSun for the white dwarf primary and M2 = 0.198 \pm 0.029 MSun for the M-type secondary star. These parameters are found to be in excellent agreement with previous mass determinations found via photometric fitting techniques, supporting the accuracy and validity of photometric mass determinations in short period CVs.Comment: Accepted for publication in MNRAS (24th January 2012). 10 pages, 9 figures (black and white

    Mass and Angular Momentum Transfer in the Massive Algol Binary RY Persei

    Full text link
    We present an investigation of H-alpha emission line variations observed in the massive Algol binary, RY Per. We give new radial velocity data for the secondary based upon our optical spectra and for the primary based upon high dispersion UV spectra. We present revised orbital elements and an estimate of the primary's projected rotational velocity (which indicates that the primary is rotating 7 times faster than synchronous). We use a Doppler tomography algorithm to reconstruct the individual primary and secondary spectra in the region of H-alpha, and we subtract the latter from each of our observations to obtain profiles of the primary and its disk alone. Our H-alpha observations of RY Per show that the mass gaining primary is surrounded by a persistent but time variable accretion disk. The profile that is observed outside-of-eclipse has weak, double-peaked emission flanking a deep central absorption, and we find that these properties can be reproduced by a disk model that includes the absorption of photospheric light by the band of the disk seen in projection against the face of the star. We developed a new method to reconstruct the disk surface density distribution from the ensemble of H-alpha profiles observed around the orbit, and this method accounts for the effects of disk occultation by the stellar components, the obscuration of the primary by the disk, and flux contributions from optically thick disk elements. The resulting surface density distribution is elongated along the axis joining the stars, in the same way as seen in hydrodynamical simulations of gas flows that strike the mass gainer near trailing edge of the star. This type of gas stream configuration is optimal for the transfer of angular momentum, and we show that rapid rotation is found in other Algols that have passed through a similar stage.Comment: 39 pages, 12 figures, ApJ in press, 2004 June 20 issu

    Observables in Topological Yang-Mills Theories

    Full text link
    Using topological Yang-Mills theory as example, we discuss the definition and determination of observables in topological field theories (of Witten-type) within the superspace formulation proposed by Horne. This approach to the equivariant cohomology leads to a set of bi-descent equations involving the BRST and supersymmetry operators as well as the exterior derivative. This allows us to determine superspace expressions for all observables, and thereby to recover the Donaldson-Witten polynomials when choosing a Wess-Zumino-type gauge.Comment: 39 pages, Late

    VLT spectroscopy of XTE J2123-058 during quiescence

    Get PDF
    We present VLT low resolution spectroscopy of the neutron star X-ray transient XTE J2123-058 during its quiescent state. Our data reveal the presence of a K7V companion which contributes 77 % to the total flux at 6300 A and orbits the neutron star at K_2 = 287 +/- 12 km/s. Contrary to other soft X-ray transients (SXTs), the Halpha emission is almost exactly in antiphase with the velocity curve of the optical companion. Using the light-center technique we obtain K_1 = 140 +/- 27 km/s and hence q=K_1/K_2=M_2/M_1= 0.49 +/- 0.10. This, combined with a previous determination of the inclination angle (i=73 +/- 4) yields M_1 = 1.55 +/- 0.31 Msun and M_2 = 0.76 +/- 0.22 Msun. M_2 agrees well with the observed spectral type. Doppler tomography of the Halpha emission shows a non-symmetric accretion disc distribution mimicking that seen in SW Sex stars. Although we find a large systemic velocity of -110 +/- 8 km/s this value is consistent with the galactic rotation velocity at the position of J2123-058, and hence a halo origin. The formation scenario of J2123-058 is still unresolved.Comment: 10 pages, 3 figures, accepted for publication in MNRAS with very minor change

    Irradiation of the secondary star in X-ray Nova Scorpii 1994 (=GRO J1655--40)

    Get PDF
    We have obtained intermediate resolution optical spectra of the black-hole candidate Nova Sco 1994 in June 1996, when the source was in an X-ray/optical active state (R~15.05). We measure the radial velocity curve of the secondary star and obtain a semi-amplitude of 279+/-10 km/s; a value which is 30 per cent larger than the value obtained when the source is in quiescence. Our large value for K_2 is consistent with 60 +9,-7 per cent of the secondary star's surface being heated; compared to 35 per cent, which is what one would expect if only the inner face of the secondary star were irradiated. Effects such as irradiation-induced flows on the secondary star may be important in explaining the observed large value for K_2.Comment: 5 pages, 2 figures, accepted by MNRA

    Hard X-ray flares in IGR J08408-4503 unveil clumpy stellar winds

    Full text link
    Context : A 1000-s flare from a new hard X-ray transient, IGR J08408-4503, was observed by INTEGRAL on May 15, 2006 during the real-time routine monitoring of IBIS/ISGRI images performed at the INTEGRAL Science Data Centre. The flare, detected during a single one-hour long pointing, peaked at 250 mCrab in the 20-40 keV energy range. Aims : Multi-wavelength observations, combining high-energy and optical data, were used to unveil the nature of IGR J08408-4503. Methods : A search in all INTEGRAL public data for other bursts from IGR J08408-4503 was performed, and the detailed analysis of another major flare is presented. The results of two Swift Target of Opportunity observations are also described. Finally, a study of the likely optical counterpart, HD 74194, is provided. Results : IGR J08408-4503 is very likely a supergiant fast X-ray transient (SFXT) system. The system parameters indicate that the X-ray flares are probably related to the accretion of wind clumps on a compact object orbiting about 1E13 cm from the supergiant HD 74194. The clump mass loss rate is of the order of 1E-6 solar mass/yr. Conclusions : Hard X-ray flares from SFXTs allow to probe the stellar winds of massive stars, and could possibly be associated with wind perturbations due to line-driven instabilities.Comment: 5 pages with 5 figures. Published as a Letter in Astronomy & Astrophysic

    Time-resolved optical spectroscopy of the pulsating DA white dwarf HS 0507+0434B: New constraints on mode identification and pulsation properties

    Get PDF
    We present a detailed analysis of time-resolved optical spectra of the ZZ Ceti white dwarf, HS 0507+0434B. Using the wavelength dependence of observed mode amplitudes, we deduce the spherical degree, l, of the modes, most of which have l=1. The presence of a large number of combination frequencies (linear sums or differences of the real modes) enabled us not only to test theoretical predictions but also to indirectly infer spherical and azimuthal degrees of real modes that had no observed splittings. In addition to the above, we measure line-of-sight velocities from our spectra. We find only marginal evidence for periodic modulation associated with the pulsation modes: at the frequency of the strongest mode in the lightcurve, we measure an amplitude of 2.6+/-1.0 km/s, which has a probability of 2% of being due to chance; for the other modes, we find lower values. Our velocity amplitudes and upper limits are smaller by a factor of two compared to the amplitudes found in ZZ Psc. We find that this is consistent with expectations based on the position of HS 0507+0434B in the instability strip. Combining all the available information from data such as ours is a first step towards constraining atmospheric properties in a convectionally unstable environment from an observational perspective.Comment: 16 pages, 12 figs.; accepted for publication in A&

    Quantum Holonomy in Three-dimensional General Covariant Field Theory and Link Invariant

    Full text link
    We consider quantum holonomy of some three-dimensional general covariant non-Abelian field theory in Landau gauge and confirm a previous result partially proven. We show that quantum holonomy retains metric independence after explicit gauge fixing and hence possesses the topological property of a link invariant. We examine the generalized quantum holonomy defined on a multi-component link and discuss its relation to a polynomial for the link.Comment: RevTex, 12 pages. The metric independence of path integral measure is justified and the case of multi-component link is discussed in detail. To be published in Physical Review
    corecore