40 research outputs found

    A concise guide to choosing suitable gene expression systems for recombinant protein production

    Get PDF
    This overview guides both novices and experienced researchers facing challenging targets to select the most appropriate gene expression system for producing a particular protein. By answering four key questions, readers can determine the most suitable gene expression system following a decision scheme. This guide addresses the most commonly used and accessible systems and provides brief descriptions of the main gene expression systems' key characteristics to assist decision making. Additionally, information has been included for selected less frequently used "exotic" gene expression systems

    Contributions of the international plant science community to the fight against human infectious diseases - part 1: epidemic and pandemic diseases.

    Get PDF
    Infectious diseases, also known as transmissible or communicable diseases, are caused by pathogens or parasites that spread in communities by direct contact with infected individuals or contaminated materials, through droplets and aerosols, or via vectors such as insects. Such diseases cause ~17% of all human deaths and their management and control places an immense burden on healthcare systems worldwide. Traditional approaches for the prevention and control of infectious diseases include vaccination programmes, hygiene measures and drugs that suppress the pathogen, treat the disease symptoms or attenuate aggressive reactions of the host immune system. The provision of vaccines and biologic drugs such as antibodies is hampered by the high cost and limited scalability of traditional manufacturing platforms based on microbial and animal cells, particularly in developing countries where infectious diseases are prevalent and poorly controlled. Molecular farming, which uses plants for protein expression, is a promising strategy to address the drawbacks of current manufacturing platforms. In this review article, we consider the potential of molecular farming to address healthcare demands for the most prevalent and important epidemic and pandemic diseases, focussing on recent outbreaks of high-mortality coronavirus infections and diseases that disproportionately affect the developing world

    Contributions of the international plant science community to the fight against infectious diseases in humans-part 2: Affordable drugs in edible plants for endemic and re-emerging diseases.

    Get PDF
    The fight against infectious diseases often focuses on epidemics and pandemics, which demand urgent resources and command attention from the health authorities and media. However, the vast majority of deaths caused by infectious diseases occur in endemic zones, particularly in developing countries, placing a disproportionate burden on underfunded health systems and often requiring international interventions. The provision of vaccines and other biologics is hampered not only by the high cost and limited scalability of traditional manufacturing platforms based on microbial and animal cells, but also by challenges caused by distribution and storage, particularly in regions without a complete cold chain. In this review article, we consider the potential of molecular farming to address the challenges of endemic and re-emerging diseases, focusing on edible plants for the development of oral drugs. Key recent developments in this field include successful clinical trials based on orally delivered dried leaves of Artemisia annua against malarial parasite strains resistant to artemisinin combination therapy, the ability to produce clinical-grade protein drugs in leaves to treat infectious diseases and the long-term storage of protein drugs in dried leaves at ambient temperatures. Recent FDA approval of the first orally delivered protein drug encapsulated in plant cells to treat peanut allergy has opened the door for the development of affordable oral drugs that can be manufactured and distributed in remote areas without cold storage infrastructure and that eliminate the need for expensive purification steps and sterile delivery by injection

    An overview of descriptors to capture protein properties – Tools and perspectives in the context of QSAR modeling

    No full text
    Proteins are important ingredients in food and feed, they are the active components of many pharmaceutical products, and they are necessary, in the form of enzymes, for the success of many technical processes. However, production can be challenging, especially when using heterologous host cells such as bacteria to express and assemble recombinant mammalian proteins. The manufacturability of proteins can be hindered by low solubility, a tendency to aggregate, or inefficient purification. Tools such as in silico protein engineering and models that predict separation criteria can overcome these issues but usually require the complex shape and surface properties of proteins to be represented by a small number of quantitative numeric values known as descriptors, as similarly used to capture the features of small molecules. Here, we review the current status of protein descriptors, especially for application in quantitative structure activity relationship (QSAR) models. First, we describe the complexity of proteins and the properties that descriptors must accommodate. Then we introduce descriptors of shape and surface properties that quantify the global and local features of proteins. Finally, we highlight the current limitations of protein descriptors and propose strategies for the derivation of novel protein descriptors that are more informative

    The impact of Pseudomonas syringae type III effectors on transient protein expression in tobacco

    No full text
    The production of recombinant proteins in plants is often achieved by transient expression, e.g. following the injection or vacuum infiltration of Agrobacterium tumefaciens into tobacco leaves. We investigated the associated plant defence responses, revealing that callose deposition is triggered by T-DNA transfer and that subsets of secondary metabolites accumulate in response to mechanical wounding or the presence of bacteria. We also tested the ability of five co-expressed type III effector proteins from Pseudomonas syringae to modulate these defence responses and increase the yield of two model proteins, the fluorescent marker DsRed and monoclonal antibody 2G12. HopF2 and AvrRpt2 induced necrotic lesions 5days post-injection (dpi) even at low doses (OD600nm=0.0078), and increased the concentration of certain secondary metabolites. HopAO1 significantly reduced the number of callose deposits at 2dpi compared to cells expressing DsRed and 2G12 alone, whereas HopI1 reduced the concentration of several secondary metabolites at 5dpi compared to cells expressing DsRed and 2G12 alone. Co-expression with HopAO1, AvrPtoB or HopI1 increased the concentrations of DsRed and 2G12 increased by similar to 6% but this was not a significant change. In contrast, HopF2 and AvrRpt2 significantly reduced the concentrations of DsRed and 2G12 by 34% and 22%, respectively. Our results show that type III effector proteins can modulate plant defence responses and secondary metabolite profiles butthat transient co-expression is not sufficient to increase the yields of target recombinant proteins in tobacco

    The Correlation Between DsRed mRNA Levels and Transient DsRed Protein Expression in Plants Depends on Leaf Age and the 5′ Untranslated Region

    No full text
    The yield of recombinant proteins in plants determines their economic competitiveness as a production platform compared to microbes and mammalian cells. The promoter, untranslated regions (UTRs) and codon usage can all contribute to the yield, but potential interactions among these components have not been examined in detail. Here the effect of two promoters (35SS and nos) and four 5′UTRs on the spatiotemporal expression of DsRed mRNA and the accumulation of DsRed protein during transient expression in tobacco (Nicotiana tabacum) mediated by Agrobacterium tumefaciens is investigated. The authors found that the mRNA levels peaked 2–3 days post‐infiltration (dpi), and rapidly declined thereafter, whereas DsRed protein was first detected after ≈3 days and concentrations continued to increase until at least 5 dpi. This temporal decoupling of mRNA and protein expression was strongest in the older leaves, which also produced the lowest DsRed yields. The accumulation of DsRed linearly correlated with mRNA levels in all but the youngest leaves, where more DsRed was synthesized per mRNA molecule. This was the case for both promoters, although the nos promoter had a higher protein/mRNA ratio than the 35SS promoter. Furthermore, the type of 5′UTR affected DsRed protein accumulation by 50% starting from similar levels of mRNA. The authors concluded that DsRed mRNA levels are not the limiting factor for DsRed protein expression in plants, but that translation‐associated processes such as initiation, elongation, and release are bottlenecks that should be addressed in future studies
    corecore