126 research outputs found

    New U-Pb ages for syn-orogenic magmatism in the SW sector of the Ossa Morena Zone (Portugal)

    Get PDF
    The Ossa-Morena Zone (OMZ) is a major geotectonic unit within the Iberian Massif (which constitutes an important segment of the European Variscan Belt) and one of its distinguishing features is the presence of a noteworthy compositional diversity of plutonic rocks. In the SW sector of the OMZ, the tonalitic Hospitais intrusion (located to the W of Montemor-o-Novo) is considered a typical example of syn-orogenic magmatism, taking into account that both the long axis of the plutonic body and its mesoscopic foliation are oriented parallel to the Variscan WNW-ESE orientation. Another relevant feature of the Hospitais intrusion is the occurrence of mafic microgranular enclaves within the main tonalite. In previous works (Moita et al., 2005; Moita, 2007), it was proposed that: (1) the Hospitais intrusion is part of a calc-alkaline suite, represented by a large number of intrusions in this sector of the OMZ, ranging from gabbros to granites; (2) the enclaves are co-genetic to the host tonalite in the Hospitais pluton. In this study, zircon populations from one sample of the main tonalite (MM-17) and one sample of the associated enclave (MM-17E) were analysed by ID-TIMS for U-Pb geochronology. In each sample, three fractions of nice glassy, euhedral, long prismatic and inclusion free crystals were analysed. The results from the three fractions of MM-17 yielded a 206Pb/238U age of 337.0 ± 2.0 Ma. Similarly, for the enclave MM-17E a 206Pb/238U zircon age of 336.5 ± 0.47 Ma was obtained. These identical ages, within error, are in agreement with a common parental magma for the tonalite and mafic granular enclaves. Similar U-Pb ages have been reported in previous works for plutonic and metamorphic events in this region (e.g.: Pereira et al., 2009; Antunes et al., 2011). Furthermore, also in the SW sector of the OMZ, palaeontological studies (Pereira et al., 2006; Machado & Hladil, 2010) carried out in Carboniferous sedimentary basins containing intercalated calc-alkaline volcanics (Santos et al., 1987; Chichorro, 2006) have shown that they are mainly of Visean age. Therefore, magmatism displaying features typical of continental arc setting seems to have been active in this part of the OMZ during the Lower Carboniferous times

    Mode Mixing and Rotational Splittings: I. Near-Degeneracy Effects Revisited

    Full text link
    Rotation is typically assumed to induce strictly symmetric rotational splitting into the rotational multiplets of pure p- and g-modes. However, for evolved stars exhibiting mixed modes, avoided crossings between different multiplet components are known to yield asymmetric rotational splitting, particularly for near-degenerate mixed-mode pairs, where notional pure p-modes are fortuitiously in resonance with pure g-modes. These near-degeneracy effects have been described in subgiants, but their consequences for the characterisation of internal rotation in red giants has not previously been investigated in detail, in part owing to theoretical intractability. We employ new developments in the analytic theory of mixed-mode coupling to study these near-resonance phenomena. In the vicinity of the most p-dominated mixed modes, the near-degenerate intrinsic asymmetry from pure rotational splitting increases dramatically over the course of stellar evolution, and depends strongly on the mode mixing fraction ζ\zeta. We also find that a linear treatment of rotation remains viable for describing the underlying p- and g-modes, even when it does not for the resulting mixed modes undergoing these avoided crossings. We explore observational consequences for potential measurements of asymmetric mixed-mode splitting, which has been proposed as a magnetic-field diagnostic. Finally, we propose improved measurement techniques for rotational characterisation, exploiting the linearity of rotational effects on the underlying p/g modes, while still accounting for these mixed-mode coupling effects.Comment: 21 pages, 13 figures. Accepted to Ap

    Horizontal shear instabilities in rotating stellar radiation zones:II. Effects of the full Coriolis acceleration

    Get PDF
    Stellar interiors are the seat of efficient transport of angular momentum all along their evolution. Understanding the dependence of the turbulent transport triggered by the shear instabilities due to the differential rotation in stellar radiation zones is mandatory. Indeed, it constitutes one of the cornerstones of the rotational transport and mixing theory which is implemented in stellar evolution codes to predict the rotational and chemical evolutions of stars. We investigate horizontal shear instabilities in stellar radiation zones by considering the full Coriolis acceleration with both the dimensionless horizontal component f~\tilde{f} and the vertical component ff. We performed a linear stability analysis for a horizontal shear flow with a hyperbolic tangent profile, both numerically and asymptotically using the WKBJ approximation. As in the traditional approximation, we identified the inflectional and inertial instabilities. The inflectional instability is destabilized as f~\tilde{f} increases and its maximum growth rate increases significantly, while the thermal diffusivity stabilizes the inflectional instability similarly to the traditional case. The inertial instability is also strongly affected; for instance, the inertially unstable regime is extended in the non-diffusive limit as 0<f<1+f~2/N20<f<1+\tilde{f}^{2}/N^{2}, where NN is the dimensionless Brunt-V\"ais\"al\"a frequency. More strikingly, in the high-thermal-diffusivity limit, it is always inertially unstable at any colatitude θ\theta except at the poles (i.e., 0<θ<1800^{\circ}<\theta<180^{\circ}). Using the asymptotic and numerical results, we propose a prescription for the effective turbulent viscosities induced by the instabilities to be possibly used in stellar evolution models. The characteristic time of this turbulence is short enough to redistribute efficiently angular momentum and mix chemicals in the radiation zones.Comment: Accepted in A&

    Exploring the probing power of γ Dor's inertial dip for core magnetism: The case of a toroidal field

    Get PDF
    Context. γ Dor stars are ideal targets for studies of the innermost dynamical properties of stars, due to their rich asteroseismic spectrum of gravity modes. Integrating internal magnetism to the picture appears as the next milestone of detailed asteroseismic studies, for its prime importance on stellar evolution. The inertial dip in prograde dipole modes period-spacing pattern of γ Dors stands out as a unique window on the convective core structure and dynamics. Recent studies have highlighted the dependence of the dip structure on core density stratification, the contrast of the near-core Brunt-Väisälä frequency and rotation rate, as well as the core-to-near-core differential rotation. In addition, the effect of envelope magnetism has been derived on low-frequency magneto-gravito-inertial waves. Aims. We revisited the inertial dip formation including core and envelope magnetism, and explored the probing power of this feature on dynamo-generated core fields. Methods. We considered as a first step a toroidal magnetic field with a bi-layer (core and envelope) Alfvén frequency. This configuration allowed us to revisit the coupling problem using our knowledge on both core magneto-inertial modes and envelope magneto-gravito-inertial modes. Using this configuration, we were able to stay in an analytical framework to exhibit the magnetic effects on the inertial dip shape and location. This configuration allowed a laboratory to be set up that moves us towards the comprehension of magnetic effects on the dip structure. Results. We show a shift of the inertial dip towards lower spin parameter values and a thinner dip with increasing core magnetic field’s strength, quite similar to the signature of differential rotation. The magnetic effects become sizeable when the ratio of the magnetic to the Coriolis effects is high enough. We explored the potential degeneracy of the magnetic effects with differential rotation. We studied the detectability of core magnetism, considering both observational constraints on the periods of the modes and potential gravito-inertial mode suppression

    Asteroseismic Signatures of Core Magnetism and Rotation in Hundreds of Low-Luminosity Red Giants

    Get PDF
    Red Giant stars host solar-like oscillations which have mixed character, being sensitive to conditions both in the outer convection zone and deep within the interior. The properties of these modes are sensitive to both core rotation and magnetic fields. While asteroseismic studies of the former have been done on a large scale, studies of the latter are currently limited to tens of stars. We aim to produce the first large catalogue of both magnetic and rotational perturbations. We jointly constrain these parameters by devising an automated method for fitting the power spectra directly. We successfully apply the method to 302 low-luminosity red giants. We find a clear bimodality in core rotation rate. The primary peak is at δνrot\delta \nu_{\mathrm{rot}} = 0.32 μ\muHz, and the secondary at δνrot\delta \nu_{\mathrm{rot}} = 0.47 μ\muHz. Combining our results with literature values, we find that the percentage of stars rotating much more rapidly than the population average increases with evolutionary state. We measure magnetic splittings of 2σ\sigma significance in 23 stars. While the most extreme magnetic splitting values appear in stars with masses &gt; 1.1M_{\odot}, implying they formerly hosted a convective core, a small but statistically significant magnetic splitting is measured at lower masses. Asymmetry between the frequencies of a rotationally split multiplet has previously been used to diagnose the presence of a magnetic perturbation. We find that of the stars with a significant detection of magnetic perturbation, 43\% do not show strong asymmetry. We find no strong evidence of correlation between the rotation and magnetic parameters

    Asteroseismic signatures of core magnetism and rotation in hundreds of low-luminosity red giants

    Get PDF
    Red Giant stars host solar-like oscillations which have mixed character, being sensitive to conditions both in the outer convection zone and deep within the interior. The properties of these modes are sensitive to both core rotation and magnetic fields. While asteroseismic studies of the former have been done on a large scale, studies of the latter are currently limited to tens of stars. We aim to produce the first large catalogue of both magnetic and rotational perturbations. We jointly constrain these parameters by devising an automated method for fitting the power spectra directly. We successfully apply the method to 302 low-luminosity red giants. We find a clear bimodality in core rotation rate. The primary peak is at δνrot = 0.32 μHz, and the secondary at δνrot = 0.47 μHz. Combining our results with literature values, we find that the percentage of stars rotating much more rapidly than the population average increases with evolutionary state. We measure magnetic splittings of 2σ significance in 23 stars. While the most extreme magnetic splitting values appear in stars with masses > 1.1M⊙, implying they formerly hosted a convective core, a small but statistically significant magnetic splitting is measured at lower masses. Asymmetry between the frequencies of a rotationally split multiplet has previously been used to diagnose the presence of a magnetic perturbation. We find that of the stars with a significant detection of magnetic perturbation, 43\% do not show strong asymmetry. We find no strong evidence of correlation between the rotation and magnetic parameters

    Operando analysis of a solid oxide fuel cell by environmental transmission electron microscopy

    Full text link
    Correlating the microstructure of an energy conversion device to its performance is often a complex exercise, notably in solid oxide fuel cell (SOFC) research. SOFCs combine multiple materials and interfaces that evolve in time due to high operating temperatures and reactive atmospheres. We demonstrate here that operando environmental transmission electron microscopy can simplify the identification of structure-property links in such systems. By contacting a cathode-electrolyte-anode cell to a heating and biasing microelectromechanical system in a single-chamber configuration, a direct correlation is found between the environmental conditions (O2 and H2 partial pressures, temperature), the cell voltage, and the microstructural evolution of the fuel cell, down to the atomic scale. The results shed new insights into the impact of the anode oxidation state and its morphology on the cell electrical properties.Comment: 18 pages, 5 figure

    FliPer<sub>Class</sub>:in search of solar-like pulsators among TESS targets

    Get PDF
    The NASA's Transiting Exoplanet Survey Satellite (TESS) is about to provide full-frame images of almost the entire sky. The amount of stellar data to be analysed represents hundreds of millions stars, which is several orders of magnitude above the amount of stars observed by CoRoT, Kepler, or K2 missions. We aim at automatically classifying the newly observed stars, with near real-time algorithms, to better guide their subsequent detailed studies. In this paper, we present a classification algorithm built to recognise solar-like pulsators among classical pulsators, which relies on the global amount of power contained in the PSD, also known as the FliPer (Flicker in spectral Power density). As each type of pulsating star has a characteristic background or pulsation pattern, the shape of the PSD at different frequencies can be used to characterise the type of pulsating star. The FliPer Classifier (FliPerClass_{Class}) uses different FliPer parameters along with the effective temperature as input parameters to feed a machine learning algorithm in order to automatically classify the pulsating stars observed by TESS. Using noisy TESS simulated data from the TESS Asteroseismic Science Consortium (TASC), we manage to classify pulsators with a 98% accuracy. Among them, solar-like pulsating stars are recognised with a 99% accuracy, which is of great interest for further seismic analysis of these stars like our Sun. Similar results are obtained when training our classifier and applying it to 27 days subsets of real Kepler data. FliPerClass_{Class} is part of the large TASC classification pipeline developed by the TESS Data for Asteroseismology (T'DA) classification working group.Comment: 8 pages, 6 figures, accepted to A&
    corecore