141 research outputs found

    Proof firm downsizing and diagnosis-specific disability pensioning in Norway

    Get PDF
    <br>Background: We wanted to investigate if firm downsizing is related to an increased rate of disability pensions among the former employed, especially for those with musculoskeletal and psychiatric diagnoses, and for those having to leave the firm.</br> <br>Methods: Statistics Norway provided a linked file with demographic information and all social security grants from the National Insurance Administration for 1992–2004 for all inhabitants in Norway. Our sample was aged 30–55 years in 1995, being alive, employed and not having a disability pension at the end of 2000. Downsizing was defined as percent change in number of employed per firm from 1995 to end 2000. Employment data were missing for 25.6% of the sample.</br> <br>Results: Disability pension rates in the next four years were 25% higher for those experiencing a 30-59% downsizing than for those not experiencing a reduction of the workforce. 1-29% and 60-100% downsizing did not have this effect. Stayers following down-sizing had higher disability pension rates than leavers. What we have called complex musculoskeletal and psychiatric diagnoses were relatively most common.</br> <br>Conclusion: Moderate downsizing is followed by a significant increase in disability pension rates in the following four years, often with complex musculoskeletal and psychiatric diagnoses.</br&gt

    How primary health care physicians make sick listing decisions: The impact of medical factors and functioning

    Get PDF
    Abstract Background The decision to issue sickness certification in Sweden for a patient should be based on the physician's assessment of the reduction of the patient's work capacity due to a disease or injury, not on psychosocial factors, in spite of the fact that they are known as risk factors for sickness absence. The aim of this study was to investigate the influence of medical factors and functioning on sick listing probability. Methods Four hundred and seventy-four patient-physician consultations, where sick listing could be an option, in general practice in Örebro county, central Sweden, were documented using physician and patient questionnaires. Information sought was the physicians' assessments of causes and consequences of the patients' complaints, potential to recover, diagnoses and prescriptions on sick leave, and the patients' view of their family and work situation and functioning as well as data on the patients' former and present health situation. The outcome measure was whether or not a sickness certificate was issued. Multivariate analyses were performed. Results Complaints entirely or mainly somatic as assessed by the physician decreased the risk of sick listing, and complaints resulting in severe limitation of occupational work capacity, as assessed by the patient as well as the physician, increased the risk of sick listing, as did appointments for locomotor complaints. The results for patients with infectious diseases or musculoskeletal diseases were partly similar to those for all diseases. Conclusion The strongest predictors for sickness certification were patient's and GP's assessment of reduced work capacity, with a striking concordance between physician and patient on this assessment. When patient's complaints were judged to be non-somatic the risk of sickness certification was enhanced.</p

    Risk factors for traumatic and non-traumatic lower limb pain among preadolescents: a population-based study of Finnish schoolchildren

    Get PDF
    BACKGROUND: The child's lower limb is the most commonly reported musculoskeletal location with pain and also the most commonly injured site in sports. Some potential risk factors have been studied, but the results are inconsistent. We hypothesized that distinction of traumatic from non-traumatic pain would provide a clearer picture of these factors. The aim of this study is to assess factors associated with lower extremity pain and its impact on preadolescents in a population-based cohort. METHODS: A structured pain questionnaire was completed by 1756 schoolchildren of third and fifth grades to assess musculoskeletal pain, psychosomatic symptoms, subjective disabilities, school absence and frequency of exercise. In addition, hypermobility and physical fitness were measured. RESULTS: The knee was the most common site of pain followed by the ankle-foot and thigh. Of the children who reported pain in their lower extremity, approximately 70% reported at least one disability and 19 % reported school absence attributed to their pain during the previous three-month period. Children with traumatic pain had a higher subjective disability index than those with non-traumatic pain (P = 0.02). Age less than 11 years, headache, abdominal pain, depressive feelings, day tiredness, and vigorous exercise were more common in children with lower limb pain than those free of it. In the stratified analysis, younger age was related to both traumatic and non-traumatic pain groups. Vigorous exercise was positively associated with traumatic pain, while subjects with non-traumatic pain had more frequent psychosomatic symptoms. CONCLUSION: Risk factors and consequences of traumatic and non-traumatic lower limb pain are not similar. Traumatic lower limb pain is associated with practicing vigorous exercise and high level of physical fitness, while non-traumatic pain is more correlated with psychosomatic symptoms. These differences might be one of the reasons for the discrepancy of previous research conclusions. The two conditions need to be treated as different disorders in future studies

    A strong association between non-musculoskeletal symptoms and musculoskeletal pain symptoms: results from a population study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is a lack of knowledge about the pattern of symptom reporting in the general population as most research focuses on specific diseases or symptoms. The number of musculoskeletal pain sites is a strong predictor for disability pensioning and, hence, is considered to be an important dimension in symptom reporting. The simple method of counting symptoms might also be applicable to non-musculoskeletal symptoms, rendering further dimensions in describing individual and public health. In a general population, we aimed to explore the association between self-reported non-musculoskeletal symptoms and the number of pain sites.</p> <p>Methods</p> <p>With a cross-sectional design, the Standardised Nordic Questionnaire and the Subjective Health Complaints Inventory were used to record pain at ten different body sites and 13 non-musculoskeletal symptoms, respectively, among seven age groups in Ullensaker, Norway (n = 3,227).</p> <p>Results</p> <p>Results showed a strong, almost linear relationship between the number of non-musculoskeletal symptoms and the number of pain sites (r = 0.55). The <it>number </it>and <it>type </it>of non-musculoskeletal symptoms had an almost equal explanatory power in the number of pain sites reported (27.1% vs. 28.2%).</p> <p>Conclusion</p> <p>The linear association between the number of non-musculoskeletal and musculoskeletal symptoms might indicate that the symptoms share common characteristics and even common underlying causal factors. The total burden of symptoms as determined by the number of symptoms reported might be an interesting generic indicator of health and well-being, as well as present and future functioning. Research on symptom reporting might also be an alternative pathway to describe and, possibly, understand the medically unexplained multisymptom conditions.</p

    Skeletal Muscle Differentiation Evokes Endogenous XIAP to Restrict the Apoptotic Pathway

    Get PDF
    Myotube apoptosis occurs normally during muscle development and aging but it can lead to destruction of skeletal muscle in neuromuscular diseases. Therefore, understanding how myotube apoptosis is regulated is important for developing novel strategies for treatment of muscle loss. We investigated the regulation of apoptosis in skeletal muscle and report a striking increase in resistance to apoptosis following differentiation. We find mitotic C2C12 cells (myoblast-like cells) are sensitive to cytosolic cytochrome c microinjection. However, differentiated C2C12 cells (myotube-like cells) and primary myotubes are markedly resistant. This resistance is due to endogenous X-linked inhibitor of apoptotic protein (XIAP). Importantly, the selective difference in the ability of XIAP to block myotube but not myoblast apoptosis is not due to a change in XIAP but rather a decrease in Apaf-1 expression. This decrease in Apaf-1 links XIAP to caspase activation and death. Our findings suggest that in order for myotubes to die, they may degrade XIAP, functionally inactivate XIAP or upregulate Apaf-1. Importantly, we identify a role for endogenous Smac in overcoming XIAP to allow myotube death. However, in postmitotic cardiomyocytes, where XIAP also restricts apoptosis, endogenous Smac was not capable of overcoming XIAP to cause death. These results show that as skeletal muscle differentiate, they become resistant to apoptosis because of the ability of XIAP to regulate caspase activation. The increased restriction of apoptosis in myotubes is presumably important to ensure the long term survival of these postmitotic cells as they play a vital role in the physiology of organisms

    Human Skeletal Muscle Possesses an Epigenetic Memory of Hypertrophy

    Get PDF
    It is unknown if adult human skeletal muscle has an epigenetic memory of earlier encounters with growth. We report, for the first time in humans, genome-wide DNA methylation (850,000 CpGs) and gene expression analysis after muscle hypertrophy (loading), return of muscle mass to baseline (unloading), followed by later hypertrophy (reloading). We discovered increased frequency of hypomethylation across the genome after reloading (18,816 CpGs) versus earlier loading (9,153 CpG sites). We also identified AXIN1, GRIK2, CAMK4, TRAF1 as hypomethylated genes with enhanced expression after loading that maintained their hypomethylated status even during unloading where muscle mass returned to control levels, indicating a memory of these genes methylation signatures following earlier hypertrophy. Further, UBR5, RPL35a, HEG1, PLA2G16, SETD3 displayed hypomethylation and enhanced gene expression following loading, and demonstrated the largest increases in hypomethylation, gene expression and muscle mass after later reloading, indicating an epigenetic memory in these genes. Finally, genes; GRIK2, TRAF1, BICC1, STAG1 were epigenetically sensitive to acute exercise demonstrating hypomethylation after a single bout of resistance exercise that was maintained 22 weeks later with the largest increase in gene expression and muscle mass after reloading. Overall, we identify an important epigenetic role for a number of largely unstudied genes in muscle hypertrophy/memory

    Eccentric Exercise Facilitates Mesenchymal Stem Cell Appearance in Skeletal Muscle

    Get PDF
    Eccentric, or lengthening, contractions result in injury and subsequently stimulate the activation and proliferation of satellite stem cells which are important for skeletal muscle regeneration. The discovery of alternative myogenic progenitors in skeletal muscle raises the question as to whether stem cells other than satellite cells accumulate in muscle in response to exercise and contribute to post-exercise repair and/or growth. In this study, stem cell antigen-1 (Sca-1) positive, non-hematopoetic (CD45-) cells were evaluated in wild type (WT) and α7 integrin transgenic (α7Tg) mouse muscle, which is resistant to injury yet liable to strain, 24 hr following a single bout of eccentric exercise. Sca-1+CD45− stem cells were increased 2-fold in WT muscle post-exercise. The α7 integrin regulated the presence of Sca-1+ cells, with expansion occurring in α7Tg muscle and minimal cells present in muscle lacking the α7 integrin. Sca-1+CD45− cells isolated from α7Tg muscle following exercise were characterized as mesenchymal-like stem cells (mMSCs), predominantly pericytes. In vitro multiaxial strain upregulated mMSC stem cells markers in the presence of laminin, but not gelatin, identifying a potential mechanistic basis for the accumulation of these cells in muscle following exercise. Transplantation of DiI-labeled mMSCs into WT muscle increased Pax7+ cells and facilitated formation of eMHC+DiI− fibers. This study provides the first demonstration that mMSCs rapidly appear in skeletal muscle in an α7 integrin dependent manner post-exercise, revealing an early event that may be necessary for effective repair and/or growth following exercise. The results from this study also support a role for the α7 integrin and/or mMSCs in molecular- and cellular-based therapeutic strategies that can effectively combat disuse muscle atrophy
    corecore