66 research outputs found

    A Global eDNA Comparison of Freshwater Bacterioplankton Assemblages Focusing on Large-River Floodplain Lakes of Brazil

    Get PDF
    With its network of lotic and lentic habitats that shift during changes in seasonal connection, the tropical and subtropical large-river systems represent possibly the most dynamic of all aquatic environments. Pelagic water samples were collected from Brazilian floodplain lakes (total n = 58) in four floodpulsed systems (Amazon [n = 21], Araguaia [n = 14], Paraná [n = 15], and Pantanal [n = 8]) in 2011–2012 and sequenced via 454 for bacterial environmental DNA using 16S amplicons; additional abiotic field and laboratory measurements were collected for the assayed lakes.We report here a global comparison of the bacterioplankton makeup of freshwater systems, focusing on a comparison of Brazilian lakes with similar freshwater systems across the globe. The results indicate a surprising similarity at higher taxonomic levels of the bacterioplankton in Brazilian freshwater with global sites. However, substantial novel diversity at the family level was also observed for the Brazilian freshwater systems. Brazilian freshwater bacterioplankton richness was relatively average globally. Ordination results indicate that Brazilian bacterioplankton composition is unique from other areas of the globe. Using Brazil-only ordinations, floodplain system differentiation most strongly correlated with dissolved oxygen, pH, and phosphate. Our data on Brazilian freshwater systems in combination with analysis of a collection of freshwater environmental samples from across the globe offers the first regional picture of bacterioplankton diversity in these important freshwater systems

    Mitochondrial and nuclear genes suggest that stony corals are monophyletic but most families of stony corals are not (Order Scleractinia, Class Anthozoa, Phylum Cnidaria)

    Get PDF
    Modern hard corals (Class Hexacorallia; Order Scleractinia) are widely studied because of their fundamental role in reef building and their superb fossil record extending back to the Triassic. Nevertheless, interpretations of their evolutionary relationships have been in flux for over a decade. Recent analyses undermine the legitimacy of traditional suborders, families and genera, and suggest that a non-skeletal sister clade (Order Corallimorpharia) might be imbedded within the stony corals. However, these studies either sampled a relatively limited array of taxa or assembled trees from heterogeneous data sets. Here we provide a more comprehensive analysis of Scleractinia (127 species, 75 genera, 17 families) and various outgroups, based on two mitochondrial genes (cytochrome oxidase I, cytochrome b), with analyses of nuclear genes (ßtubulin, ribosomal DNA) of a subset of taxa to test unexpected relationships. Eleven of 16 families were found to be polyphyletic. Strikingly, over one third of all families as conventionally defined contain representatives from the highly divergent "robust" and "complex" clades. However, the recent suggestion that corallimorpharians are true corals that have lost their skeletons was not upheld. Relationships were supported not only by mitochondrial and nuclear genes, but also often by morphological characters which had been ignored or never noted previously. The concordance of molecular characters and more carefully examined morphological characters suggests a future of greater taxonomic stability, as well as the potential to trace the evolutionary history of this ecologically important group using fossils

    Deep-Sea Origin and In-Situ Diversification of Chrysogorgiid Octocorals

    Get PDF
    The diversity, ubiquity and prevalence in deep waters of the octocoral family Chrysogorgiidae Verrill, 1883 make it noteworthy as a model system to study radiation and diversification in the deep sea. Here we provide the first comprehensive phylogenetic analysis of the Chrysogorgiidae, and compare phylogeny and depth distribution. Phylogenetic relationships among 10 of 14 currently-described Chrysogorgiidae genera were inferred based on mitochondrial (mtMutS, cox1) and nuclear (18S) markers. Bathymetric distribution was estimated from multiple sources, including museum records, a literature review, and our own sampling records (985 stations, 2345 specimens). Genetic analyses suggest that the Chrysogorgiidae as currently described is a polyphyletic family. Shallow-water genera, and two of eight deep-water genera, appear more closely related to other octocoral families than to the remainder of the monophyletic, deep-water chrysogorgiid genera. Monophyletic chrysogorgiids are composed of strictly (Iridogorgia Verrill, 1883, Metallogorgia Versluys, 1902, Radicipes Stearns, 1883, Pseudochrysogorgia Pante & France, 2010) and predominantly (Chrysogorgia Duchassaing & Michelotti, 1864) deep-sea genera that diversified in situ. This group is sister to gold corals (Primnoidae Milne Edwards, 1857) and deep-sea bamboo corals (Keratoisidinae Gray, 1870), whose diversity also peaks in the deep sea. Nine species of Chrysogorgia that were described from depths shallower than 200 m, and mtMutS haplotypes sequenced from specimens sampled as shallow as 101 m, suggest a shallow-water emergence of some Chrysogorgia species

    A Comprehensive Phylogenetic Analysis of the Scleractinia (Cnidaria, Anthozoa) Based on Mitochondrial CO1 Sequence Data

    Get PDF
    Classical morphological taxonomy places the approximately 1400 recognized species of Scleractinia (hard corals) into 27 families, but many aspects of coral evolution remain unclear despite the application of molecular phylogenetic methods. In part, this may be a consequence of such studies focusing on the reef-building (shallow water and zooxanthellate) Scleractinia, and largely ignoring the large number of deep-sea species. To better understand broad patterns of coral evolution, we generated molecular data for a broad and representative range of deep sea scleractinians collected off New Caledonia and Australia during the last decade, and conducted the most comprehensive molecular phylogenetic analysis to date of the order Scleractinia.Partial (595 bp) sequences of the mitochondrial cytochrome oxidase subunit 1 (CO1) gene were determined for 65 deep-sea (azooxanthellate) scleractinians and 11 shallow-water species. These new data were aligned with 158 published sequences, generating a 234 taxon dataset representing 25 of the 27 currently recognized scleractinian families.There was a striking discrepancy between the taxonomic validity of coral families consisting predominantly of deep-sea or shallow-water species. Most families composed predominantly of deep-sea azooxanthellate species were monophyletic in both maximum likelihood and Bayesian analyses but, by contrast (and consistent with previous studies), most families composed predominantly of shallow-water zooxanthellate taxa were polyphyletic, although Acroporidae, Poritidae, Pocilloporidae, and Fungiidae were exceptions to this general pattern. One factor contributing to this inconsistency may be the greater environmental stability of deep-sea environments, effectively removing taxonomic "noise" contributed by phenotypic plasticity. Our phylogenetic analyses imply that the most basal extant scleractinians are azooxanthellate solitary corals from deep-water, their divergence predating that of the robust and complex corals. Deep-sea corals are likely to be critical to understanding anthozoan evolution and the origins of the Scleractinia

    The prevention and reduction of weight loss in an acute tertiary care setting: Protocol for a pragmatic stepped wedge randomised cluster trial (the PRoWL Project)

    Get PDF
    Background: Malnutrition, with accompanying weight loss, is an unnecessary risk in hospitalised persons and often remains poorly recognised and managed. The study aims to evaluate a hospital-wide multifaceted intervention co-facilitated by clinical nurses and dietitians addressing the nutritional care of patients, particularly those at risk of malnutrition. Using the best available evidence on reducing and preventing unplanned weight loss, the intervention (introducing universal nutritional screening; the provision of oral nutritional supplements; and providing red trays and additional support for patients in need of feeding) will be introduced by local ward teams in a phased way in a large tertiary acute care hospital. Methods/Design: A pragmatic stepped wedge randomised cluster trial with repeated cross section design will be conducted. The unit of randomisation is the ward, with allocation by a random numbers table. Four groups of wards (n = 6 for three groups, n = 7 for one group) will be randomly allocated to each intervention time point over the trial. Two trained local facilitators (a nurse and dietitian for each group) will introduce the intervention. The primary outcome measure is change in patient’s body weight, secondary patient outcomes are: length of stay, all-cause mortality, discharge destinations, readmission rates and ED presentations. Patient outcomes will be measured on one ward per group, with 20 patients measured per ward per time period by an unblinded researcher. Including baseline, measurements will be conducted at five time periods. Staff perspectives on the context of care will be measured with the Alberta Context Tool. Discussion: Unplanned and unwanted weight loss in hospital is common. Despite the evidence and growing concern about hospital nutrition there are very few evaluations of system-wide nutritional implementation programs. This project will test the implementation of a nutritional intervention across one hospital system using a staged approach, which will allow sequential rolling out of facilitation and project support. This project is one of the first evidence implementation projects to use the stepped wedge design in acute care and we will therefore be testing the appropriateness of the stepped wedge design to evaluate such interventions.Alison L Kitson, Timothy J Schultz, Leslye Long, Alison Shanks, Rick Wiechula, Ian Chapman and Stijn Soene

    Genome assembly and geospatial phylogenomics of the bed bug Cimex lectularius

    Get PDF
    The common bed bug (Cimex lectularius) has been a persistent pest of humans for thousands of years, yet the genetic basis of the bed bug's basic biology and adaptation to dense human environments is largely unknown. Here we report the assembly, annotation and phylogenetic mapping of the 697.9-Mb Cimex lectularius genome, with an N50 of 971 kb, using both long and short read technologies. A RNA-seq time course across all five developmental stages and male and female adults generated 36,985 coding and noncoding gene models. The most pronounced change in gene expression during the life cycle occurs after feeding on human blood and included genes from the Wolbachia endosymbiont, which shows a simultaneous and coordinated host/commensal response to haematophagous activity. These data provide a rich genetic resource for mapping activity and density of C. lectularius across human hosts and cities, which can help track, manage and control bed bug infestations

    Comment on: Price Discovery in High Resolution

    No full text
    The microstructure literature comprises a rich set of papers that seek to understand pricing dynamics at a granular level, commonly exploring the joint dynamics of bids, asks and last sale prices. Its focus is on identifying innovations in prices and separating permanent price impacts from transient effects. Hasbrouck (1995) provides a tool that has been extensively utilized in the literature to examine these dynamics in many different market contexts over the last two decades.1 However, the evolution of markets over this period, most notably the exponential growth in the volume of data and the increasing importance of trading speed has made the application of Hasbrouck’s (1995) method and other related tools discussed in Hasbrouck (2018) more computationally and econometrically challenging. Hasbrouck (2018) offers a new approach to help overcome these challenges. In this comment, we briefly describe the evolution of markets and detail the challenges that these changes create for microstructure researchers and highlight the solution that Hasbrouck (2018) offers for these problems. We survey the literature that uses linear multivariate time-series models to understand high-frequency markets. We focus on three examples from the literature to discuss how estimation constraints have affected their modelling choices, describe the potential drawbacks of these choices and how Hasbrouck’s (2018) method can alleviate these constraints. We deliberately select papers that cover different asset classes: cash equities, fixed income and equity options. We hope that our discussion will help provide guidance about the costs and benefits of different modelling choices for future researchers confronted with a variety of methods to answer related research questions. We conclude by considering the implications of Hasbrouck’s 2018 paper for the current policy debate on market data costs
    • …
    corecore