427 research outputs found

    Dimension of the Torelli group for Out(F_n)

    Full text link
    Let T_n be the kernel of the natural map from Out(F_n) to GL(n,Z). We use combinatorial Morse theory to prove that T_n has an Eilenberg-MacLane space which is (2n-4)-dimensional and that H_{2n-4}(T_n,Z) is not finitely generated (n at least 3). In particular, this recovers the result of Krstic-McCool that T_3 is not finitely presented. We also give a new proof of the fact, due to Magnus, that T_n is finitely generated.Comment: 27 pages, 9 figure

    Breaking spaces and forms for the DPG method and applications including Maxwell equations

    Get PDF
    Discontinuous Petrov Galerkin (DPG) methods are made easily implementable using `broken' test spaces, i.e., spaces of functions with no continuity constraints across mesh element interfaces. Broken spaces derivable from a standard exact sequence of first order (unbroken) Sobolev spaces are of particular interest. A characterization of interface spaces that connect the broken spaces to their unbroken counterparts is provided. Stability of certain formulations using the broken spaces can be derived from the stability of analogues that use unbroken spaces. This technique is used to provide a complete error analysis of DPG methods for Maxwell equations with perfect electric boundary conditions. The technique also permits considerable simplifications of previous analyses of DPG methods for other equations. Reliability and efficiency estimates for an error indicator also follow. Finally, the equivalence of stability for various formulations of the same Maxwell problem is proved, including the strong form, the ultraweak form, and a spectrum of forms in between

    Self-intersection local times of random walks: Exponential moments in subcritical dimensions

    Get PDF
    Fix p>1p>1, not necessarily integer, with p(d2)<dp(d-2)<d. We study the pp-fold self-intersection local time of a simple random walk on the lattice Zd\Z^d up to time tt. This is the pp-norm of the vector of the walker's local times, t\ell_t. We derive precise logarithmic asymptotics of the expectation of exp{θttp}\exp\{\theta_t \|\ell_t\|_p\} for scales θt>0\theta_t>0 that are bounded from above, possibly tending to zero. The speed is identified in terms of mixed powers of tt and θt\theta_t, and the precise rate is characterized in terms of a variational formula, which is in close connection to the {\it Gagliardo-Nirenberg inequality}. As a corollary, we obtain a large-deviation principle for tp/(trt)\|\ell_t\|_p/(t r_t) for deviation functions rtr_t satisfying t r_t\gg\E[\|\ell_t\|_p]. Informally, it turns out that the random walk homogeneously squeezes in a tt-dependent box with diameter of order t1/d\ll t^{1/d} to produce the required amount of self-intersections. Our main tool is an upper bound for the joint density of the local times of the walk.Comment: 15 pages. To appear in Probability Theory and Related Fields. The final publication is available at springerlink.co

    Finite Element Convergence for the Joule Heating Problem with Mixed Boundary Conditions

    Get PDF
    We prove strong convergence of conforming finite element approximations to the stationary Joule heating problem with mixed boundary conditions on Lipschitz domains in three spatial dimensions. We show optimal global regularity estimates on creased domains and prove a priori and a posteriori bounds for shape regular meshes.Comment: Keywords: Joule heating problem, thermistors, a posteriori error analysis, a priori error analysis, finite element metho

    The asymptotic price of anarchy for k-uniform congestion games

    Get PDF
    We consider the atomic version of congestion games with affine cost functions, and analyze the quality of worst case Nash equilibria when the strategy spaces of the players are the set of bases of a k-uniform matroid. In this setting, for some parameter k, each player is to choose k out of a finite set of resources, and the cost of a player for choosing a resource depends affine linearly on the number of players choosing the same resource. Earlier work shows that the price of anarchy for this class of games is larger than 1.34 but at most 2.15. We determine a tight bound on the asymptotic price of anarchy equal to ≈1.35188. Here, asymptotic refers to the fact that the bound holds for all instances with sufficiently many players. In particular, the asymptotic price of anarchy is bounded away from 4/3. Our analysis also yields an upper bound on the price of anarchy <1.4131, for all instances

    Numerical Computations with H(div)-Finite Elements for the Brinkman Problem

    Full text link
    The H(div)-conforming approach for the Brinkman equation is studied numerically, verifying the theoretical a priori and a posteriori analysis in previous work of the authors. Furthermore, the results are extended to cover a non-constant permeability. A hybridization technique for the problem is presented, complete with a convergence analysis and numerical verification. Finally, the numerical convergence studies are complemented with numerical examples of applications to domain decomposition and adaptive mesh refinement.Comment: Minor clarifications, added references. Reordering of some figures. To appear in Computational Geosciences, final article available at http://www.springerlink.co

    Natural preconditioning and iterative methods for saddle point systems

    Get PDF
    The solution of quadratic or locally quadratic extremum problems subject to linear(ized) constraints gives rise to linear systems in saddle point form. This is true whether in the continuous or the discrete setting, so saddle point systems arising from the discretization of partial differential equation problems, such as those describing electromagnetic problems or incompressible flow, lead to equations with this structure, as do, for example, interior point methods and the sequential quadratic programming approach to nonlinear optimization. This survey concerns iterative solution methods for these problems and, in particular, shows how the problem formulation leads to natural preconditioners which guarantee a fast rate of convergence of the relevant iterative methods. These preconditioners are related to the original extremum problem and their effectiveness---in terms of rapidity of convergence---is established here via a proof of general bounds on the eigenvalues of the preconditioned saddle point matrix on which iteration convergence depends
    corecore