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Abstract. We consider the atomic version of congestion games with
affine cost functions, and analyze the quality of worst case Nash equilibria
when the strategy spaces of the players are the set of bases of a k-uniform
matroid. In this setting, for some parameter k, each player is to choose
k out of a finite set of resources, and the cost of a player for choosing a
resource depends affine linearly on the number of players choosing the
same resource. Earlier work shows that the price of anarchy for this class
of games is larger than 1.34 but at most 2.15. We determine a tight bound
on the asymptotic price of anarchy equal to ≈1.35188. Here, asymptotic
refers to the fact that the bound holds for all instances with sufficiently
many players. In particular, the asymptotic price of anarchy is bounded
away from 4/3. Our analysis also yields an upper bound on the price of
anarchy <1.4131, for all instances.
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1 Introduction

The effect of selfish behaviour on the overall system performance is a fundamen-
tal problem in the analysis of traffic networks, and more generally congestion
games since the early works of Pigou [13], Wardrop [17] and Braess [4]. The
problem also lies at the foundation of algorithmic game theory via Roughgarden
and Tardos’s analysis of equilibria in network routing games [16].

In network routing games, players have routing demands in a network and
interact with each other by sharing network links with load-dependent costs.
A Wardrop (or Nash) equilibrium is a routing of the demands such that no player
can decrease her cost by unilaterally deviating. It is well known that equilibrium
solutions may cause higher total costs than the system optimum, defined as the
solution that minimizes the total cost of all players. If the cost functions are
affine, Pigou’s simple example shows that equilibrium solutions can exceed the
cost of the system optimum by a factor as large as 4/3 [13]. Pigou’s example is
surprisingly simple, as it consists of only two players, each of which can choose
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one of two parallel links, with constant and linear cost functions, respectively.
Roughgarden and Tardos then showed that the relative gap can be at most 4/3 in
the worst case, for any network routing game with affine costs. The ratio between
the total cost of a worst equilibrium solution and the minimum total cost has
been named the price of anarchy (PoA) by Koutsoupias and Papadimitriou [11].
As to the PoA in network routing games, Roughgarden [15] also showed that
the PoA is independent of the network topology for network routing games, as
it is always attained on simple, Pigou-style networks.

In Wardrop’s model, as well as in [15,16], the demand of any player may be
distributed arbitrarily on minimum cost paths. A discrete version of Wardrop’s
model is that of a network routing game with unsplittable demands, also referred
to as atomic network routing games. It has been introduced in its most general
form by Rosenthal [14], who proved the existence of pure strategy Nash equilibria
via potential functions, now often referred to as Rosenthal potential functions.

This type of atomic congestion games with affine cost functions are addressed
in this paper. There is a finite set of players, a finite set of resources with affine
cost functions, and a strategy of each player is to choose a set of resources from
a given collection of subsets of the resources feasible for that player. In net-
work routing games, this strategy space of a player is the set of all paths from
a players’ origin to destination, but in general it could be any set system spe-
cific to that player. When the strategy spaces of all players are identical, this is
referred to as symmetric congestion games. Without any further restrictions on
the strategy spaces of the players, the price of anarchy for affine cost functions
is larger than 4/3, namely 5/2, as shown by Christodoulou and Koutsoupias [6]
and Awerbuch et al. [1]. This price of anarchy is already attained for a network
routing game with only three players, yet asymmetric strategy spaces. Correa
et al. [7] eventually gave a class of instances of a symmetric, affine network rout-
ing game with price of anarchy asymptotically equal to 5/2 (when the number
of players tends to infinity).

In this context, an obvious question to ask is if restrictions on the strategy
spaces of the players allows a substantial improvement of the price of anarchy
bound of 5/2. That this is generally possible is well known. For example, for
instances where players choose only a singleton resource, and with symmetric
strategy spaces, Lücking et al. [12] and Fotakis [10] showed that the price of
anarchy is only 4/3. However, if players choose a singleton resource but the
strategy spaces are no longer symmetric, there is again an asymptotic lower
bound 5/2 (when the number of players tends to infinity) [5].

Our Contribution. The results discussed so far imply in particular that for
atomic congestion games with affine cost functions, the price of anarchy does
depend on the combinatorial structure of players’ strategy spaces. Moreover,
in light of the lower bound of [5] for asymmetric, singleton congestion games,
there is room for improvement only for symmetric strategy spaces. Therefore,
in [8] the case of k-uniform matroid congestion games with affine cost functions
was studied. Here, each player is allowed to choose any of the k-element subsets
of resources. They were able to show that the price of anarchy lies strictly in
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between 1.34 and 2.15. The present paper continues this line of research, and asks
what the price of anarchy is if the number of players grows large. We answer this
question, and prove that the asymptotic price of anarchy for k-uniform, affine
congestion games equals ≈1.35188. The interpretation of our asymptotic PoA
bound is that it holds for any k and any instance with a sufficient number of
players. Tightness of our analysis follows by a matching lower bound, obtained
through a parametric set of instances for which the price of anarchy exactly
matches this bound. Our analysis also allows us to obtain an upper bound on
the price of anarchy for any instance with any finite number of players. The
bound we obtain here is slightly larger, yet <1.4131. That means that a finite
number of instances may exist with a price of anarchy larger than 1.35189, but
never as large as 1.4131.

Note that the idea to study the asymptotic price of anarchy is not new. For
instance, recent work on nonatomic network routing games considers the limit
that the total demand grows large, referred to as a “high congestion regime” [3].
They show for example in the parallel link setting and under some regularity
conditions on the cost functions, that the price of anarchy converges to 1. See
also [2] for further generalizations of these results. Another viewpoint on the
asymptotics of the price of anarchy was taken by Feldman et al. [9]. Their work
implies that for affine network routing games, the price of anarchy of atomic
games converges to the 4/3 bound of nonatomic games when the number of
players grows large. Our result shows that k-uniform strategy spaces do not
share this 4/3 limit.

The main technical ingredient to obtain our results on the asymptotic price
of anarchy is to interpret the solutions to k-uniform congestion games as k-
matchings, and by observing that the symmetric difference between equilibrium
and optimum solutions is the union of disjoint alternating paths. The bound
is then obtained by carefully analysing the cost differences that these paths
represent. We are convinced that this new way of analysing the problem might
prove to be valuable also for other, more general problems.

2 Preliminaries and Notation

An instance of the affine k-uniform congestion game is given by a parameter
k ∈ N, a complete bipartite graph G = (N ∪ R,E) and non-negative affine cost
functions (i.e., functions of type ax + b with a, b ∈ R+) cr for each r ∈ R. We
interpret N as a set of players and R as a set of resources. Each player i ∈ N
has to pick a prescribed number k of resources in R. We refer to |N |+ |R| as the
size of the instance.

It is natural to model this situation in the context of matchings. Each player
is to choose a set of k resources r ∈ R or, equivalently, a set of k incident
edges. Slightly misusing the standard notation, let us define a k-matching to be
a subset M ⊆ E whose degree vector d = dM satisfies di = k for all i ∈ N . Each
such k-matching induces corresponding costs cM

r = cr(dr), r ∈ R. Player i ∈ N
experiences corresponding cost Ci = CM

i :=
∑

ir∈M cM
r and we define the total
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cost to be cM :=
∑

i CM
i =

∑
R drcr(dr). Let OPT ⊆ E denote a k-matching

that minimizes the total cost. Sometimes it is also convenient to work with edge
costs defined by cir = cM

ir := cM
r . Thus Ci then equals the total cost of the edges

in M that are incident to i.
Given a k-matching M ⊆ E and a player i ∈ N , we let M(i) ⊆ R denote

the set of resources assigned to i. Similarly, for r ∈ R we let M(r) ⊆ N denote
the set of players that use resource r. A k-matching M ⊆ E is called a Nash
equilibrium if each player i ∈ N is satisfied with her set M(i) ⊆ R in the sense
that no other choice would strictly decrease her cost Ci (assuming that the
remaining sets M(j) stay unchanged). It is straightforward to verify that this
condition is satisfied iff Ci cannot be decreased by exchanging a single resource,
i.e., switching from M(i) to M ′(i) = M(i) − r + s for some r ∈ M(i), s /∈ M(i)
(thereby increasing the degree of s to dM

s + 1). In other words, Nash equilibria
are characterized by the Nash condition: For all i ∈ N ,

ir ∈ M, is /∈ M ⇒ cs(dM
s + 1) ≥ cM

r (dr).

The costs cs(dM
s +1) that a player experiences when he replaces one of his current

resources r by s is also called the opportunity cost of s.
In what follows we assume that NE ⊆ E is a Nash equilibrium. To simplify

the notation, we let d∗ and d̄ denote the degree vectors of OPT and NE, resp.
To simplify even more, let us denote the Nash costs by c̄r := cr(d̄r) and the
corresponding opportunity costs by c̄+r := cr(d̄r + 1). So the Nash condition
simply reads as

ir ∈ NE, is /∈ NE ⇒ c̄+s ≥ c̄r. (1)

We seek to bound the PoA = cNE/cOPT . Our main result is

Theorem 1. Any sequence of instances (kt, Gt = (Nt, Rt)) with an increasing
number of players |Nt| → ∞ has lim sup cNE/cOPT < 1.35189.

Section 3 provides some simplifications and “without loss of generality”
assumptions. In Sect. 4 we upper bound the gap cNE − cOPT and in Sect. 5
we lower bound the Nash cost cNE . Together, these two results prove lim sup
cNE/cOPT ≤ 1.35188 . . . . Corresponding tight instances (with |N |, k → ∞) are
presented in Sect. 6. We conclude with some remarks and open problems in
Sect. 7.

3 Simplifications of Worst-Case Instances

As in the previous section, we consider an instance of the affine k-uniform con-
gestion game of size m = |N |+ |R| with cost minimal k-matching OPT ⊆ E and
Nash equilibrium NE ⊆ E. As before, we denote by d∗ and d̄ the degree vectors
of OPT and NE, resp. Let ρ = cNE/cOPT be the PoA of the instance. We call
the instance k-critical (or critical for short) if no instance of size < m has PoA
≥ ρ and no instance of size = m has PoA > ρ. Clearly, in order to upper bound
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the PoA, we may restrict our attention to critical instances. In the following, we
will derive some helpful properties of critical instances. Pigou’s classic example
is obviously a critical instance of size 4. Hence, a critical instance of size ≥ 5
must have PoA > 4/3.

OPT and NE induce a partition of R into three sets:

O := {o ∈ R|d̄o > d∗
o} (“overloaded resources”)

U := {u ∈ R|d̄u < d∗
u} (“underloaded resources”)

B := {b ∈ R|d̄b = d∗
b} (“balanced resources”)

The symmetric difference OPT ⊕ NE consists of exclusive Nash edges e ∈
NE\OPT and exclusive OPT edges e ∈ OPT\NE. The set OPT ⊕ NE can
be partitioned into a set P of pairwise edge disjoint alternating paths joining O
to U and a set C of alternating (even) cycles. (Here, “alternating” means that
consecutive edges alternate between exclusive OPT and exclusive Nash edges.)
We may assume w.l.o.g. that C = ∅: If C ∈ C, then OPT ⊕ C is obviously also
cost minimal (as the d∗

r remain unchanged). We may continue this process of
“switching along alternating cycles” until no one is left.

Another w.l.o.g. assumption is the following

Lemma 1. We may assume that all cost functions cr for r ∈ O ∪ B are linear,
i.e., cr(x) = cr · x for some constant cr ≥ 0.

Proof. Assume to the contrary that cr(x) = ax + b with b > 0. Define c̃r(x) :=
x · c̄r/d̄r and observe that c̃r(d̄r) = c̄r and c̃(d̄r + 1) > c̄+r . This implies that
any Nash equilibrium remains Nash w.r.t. the modified cost functions and cNE

is unchanged. Furthermore, c̃(d∗
r) ≤ cr(d∗

r), since d∗
r ≤ d̄r. Thus cOPT can only

decrease. �
The gap cNE − cOPT can be best understood by observing how the cost

increases while we move from OPT to NE by switching along alternating paths
P ∈ P. Let Po ⊆ P denote the set of paths P ∈ P that start in o ∈ O. So
|Po| = d̄o − d∗

o. Switching OPT and NE along all paths in Po simultaneously
has the following effect on the edge costs of P = (o, i, . . . , j, u) ∈ Po: Edge io
with cost c̄o enters and edge ju with cost cu ≥ c̄+u leaves the current k-matching.
Apart from that, switching OPT and NE along P does not affect any costs of
intermediate resources r �= o, u that P may visit. Thus, when passing from OPT
to NE, the edges of P contribute a total increase of c̄o − cu ≤ c̄o − c̄+u . We refer
to the latter as the internal cost bound of path P . In addition to these d̄o − d∗

o

internal path costs, there are external costs experienced by d∗
o edges whose edge

costs are raised from co · d∗
o to co · d̄o, due to the increase in degree of o.

Summarizing, the gap can be bounded by

cNE − cOPT ≤
∑

P=(o,...,u)∈P
c̄0 − c̄+u +

∑

O

d∗
o(d̄o − d∗

o)co (2)

The external part can be upper bounded by 1
4

∑
O d̄2oco ≤ 1

4cNE (the maxi-
mum being attained for d∗

o = d̄o/2). Thus, if the internal part is close to zero,
we would get a PoA ≈ 4/3. The difficult part is to estimate the internal cost
bounds c̄o − c̄+u . To provide some intuition, we observe the following simple fact:
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Lemma 2. Each P = (o, i, . . . , j, u) ∈ P with positive internal cost bound c̄o −
c̄+u > 0 has length at least 4.

Proof. Being an alternating path that starts in a Nash edge io and ends in the
OPT edge ju, P must have even length. If P had length 2, i.e., P = (o, i, u),
with io ∈ NE and iu /∈ NE, then c̄o − c̄+u > 0 would contradict the Nash
condition (1). �

Thus each path that contributes a positive amount to the gap also “increases”
the total Nash cost cNE . (There must be at least a second Nash edge e ∈ NE
on P , apart from the first edge io.) Considerations of this kind in Sects. 4 and 5
will allow us to bound the gap in terms of cNE , i.e., to bound the relative gap
(cNE − cOPT )/cNE , which then yields a corresponding bound for cNE/cOPT . As
a little exercise, consider the following

Lemma 3. The Pigou example of size 4 is (up to scaling) the only critical
instance for k = 1. Thus PoA ≤ 4/3 for k = 1.

Proof. Consider any path P = (o, i, . . . , u) ∈ P. Then io ∈ NE, implying that
iu /∈ NE (since k = 1). Hence c̄o − c̄+u ≤ 0 follows from the Nash property. Then
(2) yields cNE −cOPT ≤ ∑

O d∗
o(d̄o −d∗

o)co ≤ 1
4cNE , i.e., cNE/cOPT ≤ 4/3, as in

Pigou’s example. Criticality then implies that the instance has size 4, and it is
then straightforward to show that (up to scaling) only Pigou’s example achieves
this bound. �

Thus we are left to deal with the case k ≥ 2. Obviously, for k ≥ 2, a k-critical
instance with PoA > 4/3 must have at least size 5 (three resources) by definition
of criticality. We end this section with some more properties of such instances,
which were already shown in [8].

Lemma 4 ([8]). For k ≥ 2, no k-critical instance has d̄r = |N | for some r ∈ R.

The following result helps to bound the internal part in Eq. (2). Let cmax
O :=

max{c̄o | o ∈ O}.

Lemma 5 ([8]). In a critical instance, c̄+r ≥ cmax
O /2 for all r ∈ R. Hence

c̄o − c̄+u ≤ c̄o/2 for all o ∈ O, u ∈ U .

Note that, as the cost functions are affine, Lemma 5 also implies c̄r ≥ 1
2 c̄+r ≥

1
4cmax

O for all r ∈ R.

4 An Upper Bound on the Relative Gap

We order the paths P = (o, . . . , u) ∈ P according to both non-decreasing values
of c̄o as well as non-increasing values of c̄+u . Let Δ := |P| and assume P1, . . . , PΔ

where Pt = (ot, . . . , ut) is an ordering with c̄o1 ≤ . . . ≤ c̄oΔ
and let P ′

1, . . . , P
′
Δ

with P ′
t = (o′

t, . . . , u
′
t) satisfy c̄+u′

1
≥ . . . ≥ c̄+u′

Δ
.
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In case c̄oΔ
≤ c̄+u′

Δ
, all paths have internal cost bound c̄o−c̄+u ≤ c̄oΔ

−c̄+u′
Δ

≤ 0,
so the PoA is no more than 4/3 (cf. Eq. (2)). So the interesting (critical) case is
when c̄oΔ

> c̄+u′
Δ

. Let t ≥ 0 be the first index for which c̄ot+1 > c̄+u′
t+1

. Let

P−+ := {P1, . . . , Pt} ∩ {P ′
1, . . . , P

′
t}.

Loosely speaking, one might say that P−+ consists of those paths in P that
join some o ∈ {o1, . . . , ot} to some u ∈ {u′

1, . . . , u
′
t}. (Here, we slightly misuse

the notation, as, e.g., {o1, . . . , ot} is actually a multiset whose elements may
also appear among ot+1, . . . , oΔ.) Thus each P ∈ P−+ has internal cost bound
c̄o − c̄+u ≤ 0. Similarly, each path in

P+− := {Pt+1, . . . , PΔ} ∩ {P ′
t+1, . . . , P

′
Δ}

has internal cost bound c̄o − c̄+u > 0. The remaining paths in

P++ := {Pt+1, . . . , PΔ} ∩ {P ′
1, . . . , P

′
t} and

P−− := {P1, . . . , Pt} ∩ {P ′
t+1, . . . , P

′
Δ}

may have positive or negative internal cost bounds. Figure 1 illustrates the idea
behind these definitions.

Fig. 1. Possible augmenting paths in P−+,P−−,P++, and P+−, respectively.

In any case, however, P = (o, . . . , u) ∈ P++ has internal cost bound c̄o −
c̄+u ≤ c̄o − c̄+ut

and any P ′ = (o′, . . . , u′) ∈ P−− has internal cost c̄o − c̄+u′ ≤
c̄ot

− c̄+u′ ≤ c̄+ut
− c̄+u′ . Thus the internal costs of such P and P ′ add to at most

c̄o − c̄+u′ ≤ c̄o/2 (cf. Lemma 5). Since |P++| = |P−−|(= Δ − t − |P+−|), we may
group the paths P++ ∪ P−− in pairs P ∈ P++, P ′ ∈ P−− with total internal
cost at most c̄o/2, where o is the starting point of P . Similarly, each (single) path
P = (o, . . . , u) ∈ P+− contributes c̄o − c̄+u ≤ c̄o/2 to the internal costs. Thus if
we let O+ ⊆ O denote the set of resources that appear among ot+1, . . . , oΔ, let
P+ := P+− ∪ P++, let P+

o denote the paths in P+ that start in o, and write
Δ+

o := |P+
o |, the gap is bounded by

cNE − cOPT ≤
∑

O+

Δ+
o c̄o/2 +

∑

O

d∗
o(d̄o − d∗

o)co (3)
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For further use we also introduce the corresponding set U− ⊆ U of resources that
appear among {u′

t+1, . . . , u
′
Δ} and, for each u ∈ U− the set P− := P−− ∪ P+−,

P−
u the paths in P− that end in u along with the corresponding Δ−

u := |P−
u |.

Note that
∑

U− Δ−
u =

∑
O+ Δ+

o = Δ − t. Furthermore, c̄o > c̄+u holds for all
o ∈ O+, u ∈ U−.

Remark. As we will see in Sect. 6, tight examples for the PoA = 1.35188 . . . are
obtained with O = O+ (and U = U−,P = P+−).

5 Lower Bounding the Cost of a Nash Equilibrium cNE

As mentioned earlier, we seek to bound the relative gap (cNE − cOPT )/cNE -
which then yields a corresponding upper bound for the PoA. To this end, we
have to lower bound cNE , which is the purpose of this section. We first lower
bound the number of edges in NE and afterwards deal with their costs.

Let I+ := NE(O+) denote the set of players i ∈ N that are joined to O+

by a Nash edge. As c̄o > c̄+u for all o ∈ O+, u ∈ U−, the Nash property implies
iu ∈ NE for all i ∈ I+, u ∈ U−. Thus we obtain

|I+| ≥
∑

O+

d̄o/(k − |U−|), (4)

since each i ∈ I+ can receive at most k − |U−| Nash edges from O+ (in addition
to its |U−| Nash edges from U−).

Let J := {j ∈ N | ∃P = (o, . . . , j, u) ∈ P−} be the set of “last players” on
paths in P−. By definition of P−, the last edge ju of a path in P− joins j to
U−. Hence at most |U−| paths in P− can go through a fixed j ∈ J . There are
Δ − t =

∑
O+ Δ+

o paths in P−. This implies

|J | ≥
∑

U−
Δ−

u /|U−| =
∑

O+

Δ+
o /|U−| (5)

Next, we observe that

I+ ∩ J = ∅. (6)

Indeed, if i ∈ I+ ∩ J , then io ∈ NE for some o ∈ O+ and iu ∈ OPT\NE
for some u ∈ U−, contradicting the Nash property (as c̄o > c̄+u ). Hence we can
estimate the number of edges (due to (6) without any double counting):

|NE| ≥
∑

O+

d̄o + |I+||U−| + |J |k. (7)

To estimate the corresponding edge costs is a bit more involved: First, observe
that if

∑
O+ d̄o ≤ ε

∑
R d̄r for a sufficiently small ε > 0 (say, ε = 0.001 is certainly

sufficient), then we deduce from Eq. (3) and Lemma 5 (implying c̄r ≥ 1
4cmax

O )
that

cNE − cOPT ≤ ε
∑

R

d̄2rc
max
O +

1
4

∑

O

d̄2oco ≤ 4ε
∑

R

d̄r c̄r +
1
4
cNE , (8)
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so the instance has a gap close to 1
4cNE , corresponding to, say, a PoA ≤ 1.34 -

thus an uninteresting (uncritical) instance in view of Sect. 6 below.
Thus, in what follows, we restrict ourselves to instances where

∑
O+ d̄o ≥

ε
∑

R d̄r = εk|N | for some small ε > 0. Since we seek to analyze instances with
|N | → ∞, we may thus assume that (

∑
O+ d̄o)/k → ∞. Then also |I+| → ∞

(cf. Eq. (4)). This further implies d̄u → ∞ and, consequently (using Lemma 5),
c̄u ≥ cmax

O /2 in the limit for u ∈ U−. Therefore, in our estimate of cNE below,
we let each u ∈ U− have c̄u = cmax

O /2.
Next we deal with the costs of the k|J | Nash edges incident to J . We intend

to show that each of these edges also has Nash cost ≥ cmax
O /2, or, at least,

that we can account such an amount for each of these edges. Let jr ∈ NE
be any such edge. Pick any o ∈ O+ with c̄o = cmax

O and any i ∈ I+ with
io ∈ NE. If ir /∈ NE, then, by the Nash condition, we have c̄+r ≥ cmax

O , implying
c̄r ≥ cmax

O /2, and we are done. Otherwise, suppose ir ∈ NE. Assume first that
jr is the only Nash edge from J to r. Then d̄r ≥ 2 (one edge from i, one from
j), hence c̄r ≥ cmax

O /3 (using c̄r ≥ 2
3 c̄+r and Lemma 5). In this case we discharge

the cost of ir to jr, resulting in an accounted cost of 2
3cmax

O on the edge jr. In
general, if there are d ≥ 1 edges joining J to r, each of these has already Nash
cost c̄r ≥ d+1

d+2 c̄+r ≥ d+1
d+2cmax

O /2. (Note that, together with the edge ir, there
are at least d + 1 Nash edges incident to r.) The edge ir ∈ NE has the same
Nash cost c̄r ≥ d+1

d+2cmax
O /2. Thus if we discharge a fraction 1

d of its cost to each
of the edges jr ∈ NE, then each of the latter gets an accounted total cost of
≥ (d+1

d+2 + d+1
d(d+2) )c

max
O /2 ≥ cmax

O /2.
Accounting 1

2cmax
O for all edges jr ∈ J × R and iu ∈ I+ × U−, we may

estimate the relative gap as follows (abbreviating u− := |U−|):

(cNE − cOPT )/cNE ≤
∑

O+ Δ+
o c̄o/2 +

∑
O d∗

o(d̄o − d∗
o)co

∑
O d̄2oco + ( u−

k−u−
∑

O+ d̄o + k
u−

∑
O+ Δ+

o )cmax
O /2

, (9)

The three sums in the denominator correspond to the cost of Nash edges in
N × O, I+ × U−, and J × R, resp. Since d∗

o(d̄o − d∗
o) ≤ 1

4 d̄2o, removing the terms
corresponding to o ∈ O\O+ in both the numerator and the denominator in (9)
can only increase the right hand side. After replacing O by O+ in the two sums
in (9), we may estimate the fraction by considering the corresponding fractions
per o ∈ O+:

(cNE − cOPT )/cNE ≤ maxo∈O+
Δ+

o c̄o/2+d∗
o(d̄o−d∗

o)co

d̄2
oco+( u−

k−u− d̄o+
k

u− Δ+
o )cmax

O /2

≤ maxo∈O+
Δ+

o d̄o/2+d∗
o(d̄o−d∗

o)

d̄2
o+( u−

k−u− d̄o+
k

u− Δ+
o )/2

.

(10)

The latter inequality is obtained by replacing cmax
O with the smaller or equal d̄oco

and dividing by co. Now, fix any o ∈ O+ where the maximum is attained. Again,
d∗

o(d̄o − d∗
o) ≤ 1

4 implies that the maximum is attained when Δ+
o is as large as

possible (unless k/u− > 4, in which case the whole fraction is less than 1
4 ). Thus
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we may assume Δ+
o = d̄o − d∗

o. Writing d̄o = βd∗
o, k = αu− (with α, β ≥ 1), the

maximum in (10) can be bounded by

μ = max
α,β

(β − 1)β/2 + β(β − 1)
β2 + (β2/(α − 1) + (β − 1)βα)/2

= 0.260292 . . . (11)

(according to WolframAlpha, for α ≈ 2.3, β ≈ 2.5). The corresponding upper
bound for cNE/cOPT is ρ = 1/(1 − μ) ≤ 1.35188 . . . . This finishes the proof of
Theorem 1. �

6 Tight Lower Bound Construction

We construct examples with PoA = 1.35188 . . . as suggested by the analysis in
Sects. 4 and 5. A close look reveals that a tight example must have O = O+

(and, correspondingly, U = U−) and d̄o − d̄∗
o many paths in P starting in o ∈ O.

We thus define N := I ∪ J and R = O ∪ B ∪ U . The number |I| = |U | ∈ N is
a free parameter fixing the problem instance. (We thus let |I| → ∞, which also
increases the number of players to infinity.) In addition, we have the two param-
eters α ≈ 2.3, β ≈ 2.5 as in Sect. 5. These determine k := α|U | and d̄o = βd∗

o.
The cost functions are co(x) = 1

|U |x for o ∈ O. For b ∈ B we have cb(x) = 1
2x

and for u ∈ U we have constant costs cu(x) = 1/2.
Each i ∈ I is joined by Nash edges to all nodes in O and U (and nothing

else). Hence k = α|U | implies |O| = (α − 1)|U |. For each i ∈ I,all Nash edges
to U are also in OPT . In addition, a 1

β fraction of its Nash edges to O is also
in OPT . No other OPT edges are incident to O. Assuming that we distribute
the OPT ∩ NE edges from I to O in a regular manner, we may thus assume
that each o ∈ O receives d∗

o OPT edges and |U | = d̄o = βd∗
o Nash edges, as

required. The Nash cost of o ∈ O is thus c̄o = |U | 1
|U | = 1 and its OPT cost is

c∗
o = |U |

β
1

|U | = 1
β . Thus the total Nash cost of O is c̄O = |O|d̄oc̄o = (α− 1)|U ||U |,

while the OPT cost equals c∗
O = |O|d∗

oc
∗
o = (α − 1) |U |

β |U | 1β = (α − 1)/β2|U |2.
Each i ∈ I now still misses an amount of k− |O|

β −|U | edges in OPT . These are

exclusive OPT edges leading to |I|(k− |O|
β −|U |) resources b ∈ B, each of degree

d̄b = d∗
b = 1. We denote this set of resources b by BP to indicate that these are

the balanced resources on alternating paths. Thus |BP | = |I|(k −|O|/β −|U |) =
|U |(α|U | − (α − 1)/β|U | − |U |) = (α − 1)(1 − 1/β)|U |2.

Each j ∈ J is joined to all of U by exclusive OPT edges. In addition, it
is joined by NE ∩ OPT edges to k − |U | nodes in B\BP , each of which has
d̄b = d∗

b = 1. Now each j ∈ J is still missing |U | exclusive Nash edges. So we
partition BP into sets of size |U | each and join each of these sets to some j ∈ J .
This fixes the size |J | := |BP |/|U | = (α − 1)(1 − 1/β)|U | and completes the
description of our instance. Figure 2 illustrates this construction.

To finish, we need to calculate the remaining costs. For u ∈ U we have
constant costs cu = 1/2, so the Nash costs are c̄U = |I||U |12 = |U |2 1

2 . The OPT
costs are c∗

U = (|J ||U |+ |I||U |) 12 = (|BP |+ |U |2) 12 = ((α−1)(1−1/β)+1)|U |2 1
2 .
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Fig. 2. Construction of a matching lower bound instance with PoA ≈ 1.35188. Edges
in OPT are dashed lines, while edges in the NE are solid.

Finally, the costs of B are the same for both NE and OPT . They equal k|J |12 =
α(α − 1)(1 − 1/β)|U |2 1

2 .
Summarizing, according to WolframAlpha we obtain (dividing by |U |2) with

α ≈ 2.3 and β ≈ 2.5

cNE/cOPT = (α−1)+ 1
2+α(α−1)(1−1/β) 1

2
(α−1)/β2+(α−1)(1− 1

β ) 1
2+

1
2+α(α−1)(1− 1

β ) 1
2

= 2+1/(α−1)+α(1−1/β)
2/β2+1−1/β+1/(α−1)+α(1−1/β) = 1.35188 . . . .

(12)

7 Remarks and Open Problems

Of course the most natural open problem is to find out whether the price of
anarchy equals ≈1.35188 also for instances with only a few players. In our anal-
ysis in Sect. 5 we used the assumption that |N | → ∞ only in order to conclude
that c̄u ≥ 1

2cmax
O in the limit. Without the assumption |N | → ∞ we can still

estimate c̄u ≥ 1
4cmax

O with the help of Lemma 5. Performing the same analysis
with this weaker estimate still leads to a reasonably small PoA < 1.4131 for all
instances. Reconsidering the lower bound example in Sect. 5, we find that the
PoA depends on the size of I (linearly related to |N |) determining the c̄u, u ∈ U
and how well α, β are approximated (i.e., |O| must be a multiple of β). If the
parameters are well approximated for some small |N | (implying small |I| and
hence c̄u significantly less than 1

2 ), it is conceivable that for these (finitely many)
values of |N | a PoA > 1.35189 might occur.

Other open questions relate to other subclasses of congestion games. Natural
candidates are, e.g., matroid congestion games, generalizing the special case of k-
uniform matroids we study here. From the viewpoint of matchings, however, also
asymmetric versions, where each player has a prescribed demand ki of resources
in R are fairly natural.
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