286 research outputs found

    Solving the stationary Liouville equation via a boundary element method

    Full text link
    Intensity distributions of linear wave fields are, in the high frequency limit, often approximated in terms of flow or transport equations in phase space. Common techniques for solving the flow equations for both time dependent and stationary problems are ray tracing or level set methods. In the context of predicting the vibro-acoustic response of complex engineering structures, reduced ray tracing methods such as Statistical Energy Analysis or variants thereof have found widespread applications. Starting directly from the stationary Liouville equation, we develop a boundary element method for solving the transport equations for complex multi-component structures. The method, which is an improved version of the Dynamical Energy Analysis technique introduced recently by the authors, interpolates between standard statistical energy analysis and full ray tracing, containing both of these methods as limiting cases. We demonstrate that the method can be used to efficiently deal with complex large scale problems giving good approximations of the energy distribution when compared to exact solutions of the underlying wave equation

    Influence of Multiharmonics Excitation on Rattle Noise in Automotive Gearboxes

    Get PDF
    We consider the automotive gearbox rattle noise resulting from vibro-impacts that can occur between the idle gears under excessive velocity fluctuations of the shaft-driving gears imposed by engine torque fluctuation. Even if the rattling phenomenon has no consequence on reliability, it may be particularly annoying for vehicle interior sound quality and acoustic comfort. The main parameters governing such kind of vibrations are the excitation source associated with engine torque fluctuation which can be modeled by an imposed displacement of the driveline, the inertia of the idle gear, the drag torque acting during the free flight motion, and the impact laws. In the case of rattle, it is reasonable to assume that duration of impacts between teeth is very short compared to the excitation period. Then, these impacts are modeled by a coefficient of restitution law. The excitation source is not composed only with fundamental component but also with other harmonic components. This study presents some effects of these additional components on the dynamic response of the idle gear

    Ray and wave scattering in smoothly curved thin shell cylindrical ridges

    Get PDF
    We propose wave and ray approaches for modelling mid- and high- frequency structural vibrations through smoothed joints on thin shell cylindrical ridges. The models both emerge from a simplified classical shell theory setting. The ray model is analysed via an appropriate phase-plane analysis, from which the fixed points can be interpreted in terms of the reflection and transmission properties. The corresponding full wave scattering model is studied using the finite difference method to investigate the scattering properties of an incident plane wave. Through both models we uncover the scattering properties of smoothed joints in the interesting mid-frequency region close to the ring frequency, where there is a qualitative change in the dynamics from anisotropic to simple geodesic propagation

    The Spitzer Survey of the Small Magellanic Cloud: S3MC Imaging and Photometry in the Mid- and Far-Infrared Wavebands

    Get PDF
    We present the initial results from the Spitzer Survey of the Small Magellanic Cloud (S3MC), which imaged the star-forming body of the Small Magellanic Cloud (SMC) in all seven MIPS and IRAC wavebands. We find that the F_8/F_24 ratio (an estimate of PAH abundance) has large spatial variations and takes a wide range of values that are unrelated to metallicity but anticorrelated with 24 um brightness and F_24/F_70 ratio. This suggests that photodestruction is primarily responsible for the low abundance of PAHs observed in star-forming low-metallicity galaxies. We use the S3MC images to compile a photometric catalog of ~400,000 mid- and far-infrared point sources in the SMC. The sources detected at the longest wavelengths fall into four main categories: 1) bright 5.8 um sources with very faint optical counterparts and very red mid-infrared colors ([5.8]-[8.0]>1.2), which we identify as YSOs. 2) Bright mid-infrared sources with mildly red colors (0.16<[5.8]-[8.0]<0.6), identified as carbon stars. 3) Bright mid-infrared sources with neutral colors and bright optical counterparts, corresponding to oxygen-rich evolved stars. And, 4) unreddened early B stars (B3 to O9) with a large 24 um excess. This excess is reminiscent of debris disks, and is detected in only a small fraction of these stars (<5%). The majority of the brightest infrared point sources in the SMC fall into groups one to three. We use this photometric information to produce a catalog of 282 bright YSOs in the SMC with a very low level of contamination (~7%).Comment: Accepted for publication in The Astrophysical Journal. Given the draconian figure file-size limits implemented in astro-ph, readers are encouraged to download the manuscript with full quality images from http://celestial.berkeley.edu/spitzer/publications/s3mcsurvey.pd

    Three-micron spectra of AGB stars and supergiants in nearby galaxies

    Get PDF
    The dependence of stellar molecular bands on the metallicity is studied using infrared L-band spectra of AGB stars (both carbon-rich and oxygen-rich) and M-type supergiants in the Large and Small Magellanic Clouds (LMC and SMC) and in the Sagittarius Dwarf Spheroidal Galaxy. The spectra cover SiO bands for oxygen-rich stars, and acetylene (C2H2), CH and HCN bands for carbon-rich AGB stars. The equivalent width of acetylene is found to be high even at low metallicity. The high C2H2 abundance can be explained with a high carbon-to-oxygen (C/O) ratio for lower metallicity carbon stars. In contrast, the HCN equivalent width is low: fewer than half of the extra-galactic carbon stars show the 3.5micron HCN band, and only a few LMC stars show high HCN equivalent width. HCN abundances are limited by both nitrogen and carbon elemental abundances. The amount of synthesized nitrogen depends on the initial mass, and stars with high luminosity (i.e. high initial mass) could have a high HCN abundance. CH bands are found in both the extra-galactic and Galactic carbon stars. None of the oxygen-rich LMC stars show SiO bands, except one possible detection in a low quality spectrum. The limits on the equivalent widths of the SiO bands are below the expectation of up to 30angstrom for LMC metallicity. Several possible explanations are discussed. The observations imply that LMC and SMC carbon stars could reach mass-loss rates as high as their Galactic counterparts, because there are more carbon atoms available and more carbonaceous dust can be formed. On the other hand, the lack of SiO suggests less dust and lower mass-loss rates in low-metallicity oxygen-rich stars. The effect on the ISM dust enrichment is discussed.Comment: accepted for A&

    Anxiety and depression after prostate cancer diagnosis and treatment: 5-year follow-up

    Get PDF
    To document anxiety and depression from pretreatment till 5-year follow-up in 299 men with localized prostate cancer. To assess, if baseline scores were predictive for anxiety and depression at 1-year follow-up. Respondents completed four assessments (pretreatment, at 6 and 12 months, and at 5-year follow-up) on anxiety, depression and mental health. Respondents were subdivided according to therapy (prostatectomy or radiotherapy) and high vs low-anxiety. Pretreatment 28% of all patients were classified as ‘high-anxiety'; their average anxiety scores decreased significantly post-treatment, that is towards less anxiety. At all assessments, high-anxiety men treated by prostatectomy reported less depression than high-anxiety men treated by radiotherapy. Of men treated by radiotherapy, 27% reported clinical significant levels of depression while 20% is expected in a general population. The improvement in mental health at 6-months follow-up was statistically significant and clinically meaningful in all respondent groups. Sensitivity of anxiety at baseline as a screening tool was 71% for anxiety and 60% for symptoms of depression. We recommend clinicians to attempt early detection of patients at risk of high levels of anxiety and depression after prostate cancer diagnosis since prevalence is high. STAI-State can be a useful screening tool but needs further development

    Is the meiofauna a good indicator for climate change and anthropogenic impacts?

    Get PDF
    Our planet is changing, and one of the most pressing challenges facing the scientific community revolves around understanding how ecological communities respond to global changes. From coastal to deep-sea ecosystems, ecologists are exploring new areas of research to find model organisms that help predict the future of life on our planet. Among the different categories of organisms, meiofauna offer several advantages for the study of marine benthic ecosystems. This paper reviews the advances in the study of meiofauna with regard to climate change and anthropogenic impacts. Four taxonomic groups are valuable for predicting global changes: foraminifers (especially calcareous forms), nematodes, copepods and ostracods. Environmental variables are fundamental in the interpretation of meiofaunal patterns and multistressor experiments are more informative than single stressor ones, revealing complex ecological and biological interactions. Global change has a general negative effect on meiofauna, with important consequences on benthic food webs. However, some meiofaunal species can be favoured by the extreme conditions induced by global change, as they can exhibit remarkable physiological adaptations. This review highlights the need to incorporate studies on taxonomy, genetics and function of meiofaunal taxa into global change impact research

    Effects of nitrogen and potassium fertilization on the susceptibility of tomatoes to post-harvest proliferation of Salmonella enterica

    Get PDF
    Fresh fruits and vegetables are increasingly recognized as vehicles of salmonellosis. Pre- and post-harvest environmental conditions, and physiological, and genetic factors are thought to contribute to the ability of human pathogens to persist in the production environment, attach to, colonize and proliferate in and on raw produce. How field production conditions affect the post-harvest food safety outcomes is not entirely understood. This study tested how varying nitrogen and potassium fertilization levels affected the "susceptibility" of tomatoes to Salmonella infections following the harvest of fruits. Two tomato varieties grown over three seasons under high, medium, and low levels of nitrogen and potassium fertilization in two locations were inoculated with seven strains of Salmonella. Even though the main effects of nitrogen and potassium fertilization on the susceptibility of tomatoes to infections with Salmonella enterica were not statistically significant overall, differences in nitrogen concentrations in plant tissues correlated with the susceptibility of partially ripe tomatoes (cv. Solar Fire) to Salmonella. Tomato maturity and the season in which tomatoes were produced had the strongest effect on the ability of Salmonella to multiply in tomatoes. Tomato phenolics, accumulation of which is known to correlate with rates of the N fertilization, did not inhibit growth of Salmonella in vitro
    corecore