717 research outputs found

    Projection distortion analysis for flattened image mosaicing from straight uniform generalized cylinders

    Get PDF
    This paper presents a new approach for reconstructing images mapped or painted on straight uniform generalized cylinders (SUGC). A set of monocular images is taken from different viewpoints in order to be mosaiced and to represent the entire scene in detail. The expressions of the SUGC's projection axis are derived from two cross-sections projected onto the image plane. Based on these axes we derive the SUGC localization in the camera coordinate system. We explain how we can find a virtual image representation when the intersection of the two axes is matched to the image center. We analyze the perspective distortions when flattening a scene which is mapped on a SUGC. We evaluate the lower and the upper bounds of the necessary number of views in order to represent the entire scene from a SUGC, by considering the distortions produced by perspective projection. A region matching based mosaicing method is proposed to be applied on the flattened images in order to obtain the complete scene. The mosaiced scene is visualized on a new synthetic surface by a mapping procedure. The proposed algorithm is used for the representation of mural paintings located on SUGCs with closed cross-sections (circles for columns), or opened cross-sections (ellipses or parabolas for vaults). (C) 2001 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved

    Feasibility of a Unitary Quantum Dynamics in the Gowdy T3T^3 Cosmological Model

    Get PDF
    It has been pointed out that it is impossible to obtain a unitary implementation of the dynamics for the polarized Gowdy T3T^{3} cosmologies in an otherwise satisfactory, nonperturbative canonical quantization proposed for these spacetimes. By introducing suitable techniques to deal with deparametrized models in cosmology that possess an explicit time dependence (as it is the case for the toroidal Gowdy model), we present in this paper a detailed analysis about the roots of this failure of unitarity. We investigate the impediments to a unitary implementation of the evolution by considering modifications to the dynamics. These modifications may be regarded as perturbations. We show in a precise manner why and where unitary implementability fails in our system, and prove that the obstructions are extremely sensitive to modifications in the Hamiltonian that dictates the time evolution of the symmetry-reduced model. We are able to characterize to a certain extent how far the model is from unitarity. Moreover, we demonstrate that the dynamics can actually be approximated as much as one wants by means of unitary transformations.Comment: 12 pages, version accepted for publication in Physical Review

    A provenance task abstraction framework

    Get PDF
    Visual analytics tools integrate provenance recording to externalize analytic processes or user insights. Provenance can be captured on varying levels of detail, and in turn activities can be characterized from different granularities. However, current approaches do not support inferring activities that can only be characterized across multiple levels of provenance. We propose a task abstraction framework that consists of a three stage approach, composed of (1) initializing a provenance task hierarchy, (2) parsing the provenance hierarchy by using an abstraction mapping mechanism, and (3) leveraging the task hierarchy in an analytical tool. Furthermore, we identify implications to accommodate iterative refinement, context, variability, and uncertainty during all stages of the framework. A use case describes exemplifies our abstraction framework, demonstrating how context can influence the provenance hierarchy to support analysis. The paper concludes with an agenda, raising and discussing challenges that need to be considered for successfully implementing such a framework

    Sorption Studies of Radioiodine on Soils with Special References to Soil Microbial Biomass

    Get PDF
    In batch experiments with two types of soils, chernozem and podzol, radioiodine (125I) showed an initial rapid sorption, followed by a long and slow further increase. Very little sorption (Rd < 1) was detected in clay minerals. Generally, higher. Revalues were observed for the chernozem soil, characterized by a higher amount of organic substance and of soil biomass. The sorption process was predominantly irreversible, the isotherms were linear at low ion concentrations and deviated from linearity starting at 10-5 mmol - ml-1. Sorption ratio was found to increase with increasing volume to mass ratio. The composition of liquid phases (bidistilled water, synthetic soil water, rain water) highly affected iodine sorption. In experiments with KBr solution, the sorption of I “ was found to be strongly preferred to Br”. Incubation of soil samples under varied conditions (decreased or increased soil biomass, 02-concentration, incubation temperature, soil water content and storage conditions) delivered indications for the participation of soil microflora in iodine immobilization. Test with isolated soil bacteria and fungi showed that radioiodine can be incorporated by soil microorganisms under certain conditions only: Considerable uptake of radioiodine was found in washed (NaCl, CaCl2) cells with both bacteria and fungi, but no incorporation was detected into cells incubated with radioiodine in the culture medium. © 1991, Walter de Gruyter. All rights reserved

    A novel approach to task abstraction to make better sense of provenance data

    Get PDF
    Working Group Report in 'Provenance and Logging for Sense Making' report from Dagstuhl Seminar 18462: Provenance and Logging for Sense Making, Dagstuhl Reports, Volume 8, Issue 1

    Tachyonic preheating using 2PI-1/N dynamics and the classical approximation

    Full text link
    We study the process of tachyonic preheating using approximative quantum equations of motion derived from the 2PI effective action. The O(N) scalar (Higgs) field is assumed to experience a fast quench which is represented by an instantaneous flip of the sign of the mass parameter. The equations of motion are solved numerically on the lattice, and the Hartree and 1/N-NLO approximations are compared to the classical approximation. Classical dynamics is expected to be valid, since the occupation numbers can rise to large values during tachyonic preheating. We find that the classical approximation performs excellently at short and intermediate times, even for couplings in the larger region currently allowed for the SM Higgs. This is reassuring, since all previous numerical studies of tachyonic preheating and baryogenesis during tachyonic preheating have used classical dynamics. We also compare different initializations for the classical simulations.Comment: 32 pages, 21 figures. Published version: Some details added, section added, references added, conclusions unchange

    In vitro embryo rescue and plant regeneration following self-pollination with irradiated pollen in cassava (Manihot esculenta Crantz)

    Get PDF
    Cassava is a highly heterozygous species; hence, current methods used in classical cassava breedingcannot match the urgent need to high yielding varieties. Recently, progress was made through androgenesis and gynogenesis as pathways for raising doubled cassava haploid lines to overcome problems associated with cassava’s inherent reproductive biology, but these efforts were limited (nocandidate cassava plantlets were regenerated). For the first time, this study shows that pollen irradiation coupled with self-pollination and embryo rescue regenerated 62 candidate cassava plantlets. Plants of an elite cassava variety, Nase14, served as a mother plant and as the pollen donor for the irradiation. Irradiation dosages of 50 to 250 Gray studied across five pollination events and 300 or 500 Gray in one pollination event caused a reduction in pollen germination up to 67.0%. By 15 days after pollination (DAP) with irradiated pollen, up to 89.7% of the pollinated flowers had aborted. By embryo rescue time (42 DAP), significant differences were observed in number of fruits, seeds and embryos generated, with the non-irradiated pollen treatments having significantly higher numbers. Sixteen (16) heterozygous SSR markers in the parent and ploidy analysis showed that none of the regenerated plants was haploid or homozygous. However, the plantlets resulting from pollination with non-irradiated pollen had 56.2% homozygous loci, while progeny derived from irradiated treatments had frequencies of homozygous loci between 28.1 and 55.0%. This is the first time to use irradiated pollen in cassava as a pathway to generate candidate plantlets as an initial step in double haploid production.Key words: Cassava, doubled haploids, embryo rescue, plant regeneration, pollen germination, pollenirradiation
    • 

    corecore