341 research outputs found

    Extinctions of aculeate pollinators in Britain and the role of large-scale agricultural changes

    Get PDF
    Pollinators are fundamental to maintaining both biodiversity and agricultural productivity, but habitat destruction, loss of flower resources, and increased use of pesticides are causing declines in their abundance and diversity. Using historical records we assessed the rate of extinction of bee and flower-visiting wasp species in Britain, from the mid 19th century to the present. The most rapid phase of extinction appears to be related to changes in agricultural policy and practice beginning in the 1920s, before the agricultural intensification prompted by the Second World War, often cited as the most important driver of biodiversity loss in Britain. Slowing of the extinction rate from the 1960s onwards may be due to prior loss of the most sensitive species and/or effective conservation programs

    Global trends in the number and diversity of managed pollinator species

    Get PDF
    Cultivation of pollinator-dependent crops has expanded globally, increasing our reliance on insect pollination. This essential ecosystem service is provided by a wide range of managed and wild pollinators whose abundance and diversity are thought to be in decline, threatening sustainable food production. The Western honey bee (Apis mellifera) is amongst the best-monitored insects but the state of other managed pollinators is less well known. Here, we review the status and trends of all managed pollinators based on publicly accessible databases and the published literature. We found that, on a global scale, the number of managed A. mellifera colonies has increased by 85% since 1961, driven mainly by Asia. This contrasts with high reported colony overwinter mortality, especially in North America (average 26% since 2007) and Europe (average 16% since 2007). Increasing agricultural dependency on pollinators as well as threats associated with managing non-native pollinators have likely spurred interest in the management of alternative species for pollination, including bumble bees, stingless bees, solitary bees, and flies that have higher efficiency in pollinating specific crops. We identify 66 insect species that have been, or are considered to have the potential to be, managed for crop pollination, including seven bumble bee species and subspecies currently commercially produced mainly for the pollination of greenhouse-grown tomatoes and two species that are trap-nested in New Zealand. Other managed pollinators currently in use include eight solitary bee species (mainly for pollination services in orchards or alfalfa fields) and three fly species (mainly used in enclosures and for seed production). Additional species in each taxonomic category are under consideration for pollinator management. Examples include 15 stingless bee species that are able to buzz-pollinate, will fly in enclosures, and some of which have a history of management for honey production; their use for pollination is not yet established. To ensure sustainable, integrated pollination management in agricultural landscapes, the risks, as well as the benefits of novel managed pollinator species must be considered. We, therefore, urge the prioritization of biodiversity-friendly measures maintaining native pollinator species diversity to provide ecosystem resilience to future environmental changes.Fil: Osterman, Julia. Martin Luther University Halle-Wittenberg; Alemania. Helmholtz Centre for Environmental Research; AlemaniaFil: Aizen, Marcelo Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina. Institute for Advanced Study; AlemaniaFil: Biesmeijer, Jacobus C.. Leiden University; Países Bajos. Naturalis Biodiversity Center; Países BajosFil: Bosch, Jordi. Universitat Autònoma de Barcelona; EspañaFil: Howlett, Brad G.. The New Zealand Institute for Plant and Food Research Ltd.; Nueva ZelandaFil: Inouye, David W.. University of Maryland; Estados Unidos. Rocky Mountain Biological Laboratory; Estados UnidosFil: Jung, Chuleui. Andong National University; Corea del SurFil: Martins, Dino J.. University of Princeton; Estados UnidosFil: Medel, Rodrigo. Universidad de Chile; ChileFil: Pauw, Anton. Stellenbosch University; SudáfricaFil: Seymour, Colleen L.. University of Cape Town; Sudáfrica. South African National Biodiversity Institute; SudáfricaFil: Paxton, Robert J. German Centre for integrative Biodiversity Research; Alemania. Martin Luther University Halle-Wittenberg; Alemani

    Summary for policymakers of the thematic assessment on pollinators, pollination and food production

    Get PDF
    The thematic assessment of pollinators, pollination and food production carried out under the auspices of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services aims to assess animal pollination as a regulating ecosystem service underpinning food production in the context of its contribution to nature’s gifts to people and supporting a good quality of life. To achieve this, it focuses on the role of native and managed pollinators, the status and trends of pollinators and pollinator-plant networks and pollination, drivers of change, impacts on human well-being, food production in response to pollination declines and deficits and the effectiveness of responses. The chapters and their executive summaries of this assessment are available as document IPBES/4/INF/1/Rev.2 (www.ipbes.net). The present document is a summary for policymakers of the information presented in these chapters
    corecore