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Abstract

Aim: Biodiversity is rapidly disappearing at local and global scales also affecting the functional

diversity of ecosystems. We aimed to assess whether functional diversity was correlated with spe-

cies diversity and whether both were affected by similar land use and vegetation structure drivers.

Better understanding of these relationships will allow us to improve our predictions regarding the

effects of future changes in land use on ecosystem functions and services.

Location: The Netherlands.

Methods: We compiled a dataset of c. 3 million observations of 66 out of 106 known Dutch but-

terfly species collected across 6,075 sampling locations during a period of 7 years, together with

very high-resolution maps of land use and countrywide vegetation structure data. Using a mixed-

effects modelling framework, we investigated the relationship between functional and species

diversity and their main land use and vegetation structure drivers.

Results: We found that high species diversity does not translate into high functional diversity, as

shown by their different spatial distribution patterns in the landscape. Functional and species

diversity are mainly driven by different sets of structural and land use parameters (especially aver-

age vegetation height, amount of vegetation between 0.5 and 2 m, natural grassland, sandy soils

vegetation, marsh vegetation and urban areas). We showed that it is a combination of both vege-

tation structural characteristics and land use variables that defines functional and species diversity.

Main conclusions: Functional diversity and species diversity of butterflies are not consistently

correlated and must therefore be treated separately. High functional diversity levels occurred even
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in areas with low species diversity. Thus, conservation actions may differ depending on whether

the focus is on conservation of high functional diversity or high species diversity. A more integra-

tive analysis of biodiversity at both species and trait levels is needed to infer the full effects of

environmental change on ecosystem functioning.

K E YWORD S

functional diversity, landscape composition, LiDAR, pollinators, response traits, species diversity,

vegetation structure

1 | INTRODUCTION

It is well known that biodiversity is rapidly disappearing at local and

global scales and that this is in great part attributable to human activ-

ities, such as deforestation and intensification of land use, which have

resulted in land degradation (Tittensor, 2015). In many industrialized

countries, extensive areas of the landscape have become more homo-

geneous in structure, resulting in a reduction in biodiversity levels,

owing to their conversion to agriculture and grasslands with high inputs

of fertilizers and pesticides (Steffen et al., 2015). This conversion and

intensification of land use, among other anthropogenic pressures,

pushes species to shift from their present locations, tracking suitable

habitats (Lenoir & Svenning, 2015). Species shifts may disrupt commu-

nity composition and destabilize ecosystem functioning and services

(e.g., pollination of crops and wild plants; Thomas, 2005). Different eco-

system functions are often performed by organisms with different sets

of traits (i.e., physiological, morphological and genetic characteristics;

Díaz et al., 2013). In this way, functional diversity can thus be under-

stood as the variety of traits that allows species to carry out functions

in the ecosystem and to move or adapt to new environments (e.g.,

Aguirre-Gutierrez et al., 2016; Hoffmann & Sgr�o, 2011). Hence, species

assemblages covering a broader range of traits (i.e., with higher func-

tional diversity) are thought to be more resilient to environmental

changes (e.g., change in land use) than functionally more homogeneous

assemblages (Cadotte, Carscadden, & Mirotchnick, 2011).

Functional diversity is not always correlated with species diversity,

and it is suggested that they refer to different sets of characteristics in

an ecosystem (Petchey & Gaston, 2002). In farm ecosystems, it has

been shown that certain management approaches may succeed in

retaining high species diversity but could in fact fail to maintain high

functional diversity (Forrest, Thorp, Kremen, & Williams, 2015). This is

worrisome, as recent work has shown that ecosystem services, such as

pollination, are strongly mediated by functional diversity in the land-

scape and not directly by the species diversity per se (Martins, Gonza-

lez, & Lechowicz, 2015). Moreover, Hoehn, Tscharntke, Tylianakis, and

Steffan-Dewenter (2008) have shown that crop yield can be increased

by the presence of more functionally diverse pollinators, and Fontaine,

Dajoz, Meriguet, and Loreau (2005) demonstrated that in natural sys-

tems higher functional diversity of pollinators can also increase plant

community diversity. However, given the lack of trait information for

most taxa, studies often rely only on species diversity measures when

investigating the impacts of environmental changes on biodiversity and

ecosystem services and resilience (Mori, Furukawa, & Sasaki, 2013).

Given the mismatch between functional and species diversity, these

two may therefore be constrained by different sets of environmental

drivers. This makes it of major importance to quantify differences not

only between functional and species diversity levels but also in their

drivers of change that generate the distribution patterns observed in

nature. This may render insights into which areas are more susceptible

to on-going and future environmental changes (Jetz et al., 2016).

Changes in land use have been highlighted as a main driver of bio-

diversity loss and biotic homogenization at local and broad scales

(Gonz�alez-Varo et al., 2013). However, changes in land use do not only

mean shifting from one type of land use to another but also changes in

the structure of the vegetation found at a given location. It is suggested

that vegetation structure is highly influential for animal diversity and

that different taxonomic groups may respond to different components

of habitat structure (Davies & Asner, 2014). Thus, this may be espe-

cially important for invertebrates that actively depend on different

microclimatic conditions provided by the spatial arrangement of vege-

tation. Moreover, the vegetation structure could also directly impact

the availability of feeding and nesting resources for invertebrates

across their different life stages (Berg, Ahrn�e, €Ockinger, Svensson, &

S€oderstr€om, 2011). Therefore, in addition to the type of land use, the

structural characteristics of the local vegetation may be important driv-

ers of functional and species diversity in the ecosystems.

Butterflies (Lepidoptera: Papilionoidea and Hesperioidea) are

widely distributed, highly diverse in traits, carry out pollination, are

widely used as sensitive indicators of environmental change (Thomas,

2005) and are one of the best-studied invertebrate groups (Merckx,

Huertas, Basset, & Thomas, 2013). We use monitoring data of butter-

flies in The Netherlands collected between 2008 and 2015 to investi-

gate how vegetation structure and land use characteristics drive their

functional and species diversity levels. Vegetation structure and land

use are characterized using a very high-resolution land cover map of

The Netherlands and countrywide remotely sensed LiDAR (light detec-

tion and ranging) information. LiDAR-derived proxies of vegetation

structure have been successfully applied to infer vegetation species

richness, to map species distributions and for conservation planning

(Simonson, Allen, & Coomes, 2014). This makes LiDAR data one of the

most viable resources for investigating biodiversity distributions and

mapping functional diversity across local and broad spatial scales.

We address the following three specific questions in this study. (a)

Are land use and vegetation structural parameters correlated with
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functional and species diversity? (b) Is functional diversity defined by a

different set of parameters from species diversity? (c) From the full set

of vegetation structure and land use parameters, which are the most

important for defining functional and species diversity? Our hypothesis

is that landscapes with heterogeneous vegetation structure and mixed

land use types maintain functionally more diverse species sets. This

may not be the case for species diverse landscapes, as these could be

functionally homogeneous. Given that functional diversity might not be

related linearly to species diversity, we expect their drivers to differ in

the strength and direction (positive or negative) of their impact.

2 | METHODS

2.1 | Study area and species data

The Netherlands is located in north Western Europe and possesses a

temperate Atlantic climate. The average minimal temperature in winter

is 21 8C, and maximal temperature averages 24 8C during the summer

(Klein Tank, Beersma, Bessembinder, van den Hurk, & Lenderink,

2014). The Netherlands has experienced major changes in land use

over the last 100 years and currently shows high levels of habitat frag-

mentation. Agricultural systems currently account for 55% of the land

area, and the forested systems are present in only 11% of the country

(http://www.fao.org/countryprofiles).

We selected the butterflies (Lepidoptera: Papilionoidea and Hes-

perioidea) as our study group given their importance as indicators of

ecosystem stability (Thomas, 2005) and the high quality of the data

available, surpassing that available for other pollinators (e.g., bees and

hoverflies). The butterfly species presence data originate from system-

atic transect counts from the Dutch Butterfly Monitoring Scheme (van

Swaay, Nowicki, Settele, & van Strien, 2008) for the 2008–2015 period

(Supporting Information Figure S1). The monitoring transects consist of

a series of up to 20 sections of 50 m 3 5 m, and only transects with at

least 12 counts in a single year were used. We used section-level spe-

cies data with the total count per species to estimate species abun-

dance. These data have been systematically collected by experts and

volunteers, and the quality of species identification and location accu-

racy of occurrence records has been assessed by the Dutch National

Database of Flora and Fauna, NDFF (see http://www.ndff.nl/over-

dendff/validatie). For a full description of the species collection meth-

ods, see van Swaay, Termaat, and Plate (2011). During the 2008–2015

period, 66 species out of a total of 106 known butterflies species for

The Netherlands were collected across 6,075 sampling locations and

are used in this study (see Supporting Information Table S1).

2.2 | Species traits, functional diversity and species

diversity

We selected eight species functional traits of butterflies that are

thought to represent response traits (sensu Díaz et al., 2013) to land

use and vegetation structure (Table 1). These traits are related to key

aspects of the butterflies’ life histories, such as dispersal, reproduction,

habitat use and diet. The species traits we selected have also been

used as response traits to explain range changes of butterflies given cli-

matic and land use changes (Aguirre-Gutierrez et al., 2016) and to

explain species assemblages responses to environmental changes

(WallisDeVries, 2014).

We used the above-mentioned traits to calculate functional diver-

sity using the functional dispersion metric, ‘FDis’ (Lalibert�e & Legendre,

2010). We selected this metric because it weighs the trait diversity by

the relative abundance of each of the species, thereby rendering a

robust method to measure functional diversity from a multidimensional

trait space. FDis is thus the mean distance, in trait space, of each single

species to the centroid of all species (Lalibert�e & Legendre, 2010).

Moreover, as our objective is to compare the drivers of functional

diversity with those of species diversity, we also obtained an estimate

of species diversity for each sampling location by means of Fisher’s a

(Fisher, Corbet, & Williams, 1943). Fisher’s a is a widely used robust

measure of diversity that is relatively unaffected by sample size

(Magurran, 2013) and is especially appropriate when species abun-

dance data are available, as in our study.

In order to obtain robust estimates of functional and species diver-

sity, we used only sampling locations where at least 50 individuals

were recorded. The FDis analysis was carried out with the ‘FD’ package

and Fisher’s a with the ‘Vegan’ package from R (Development Core

Team, http://cran.r-project.org).

2.3 | Vegetation structure and land use data

Countrywide LiDAR data were obtained from the AHN2 project for

The Netherlands (http://www.ahn.nl). The AHN2 data were collected

throughout 6 years, from 2007 to 2012, by different data suppliers,

and thus specific details on scanner type, frequency and average flight

elevation are not available. The overall AHN2 point cloud location

accuracy is 10 cm, and the systematic height error and SD are 5 cm.

The average point density is 10 points/m2. For full details on the point

cloud data from the AHN2 project, see http://www.ahn.nl.

To obtain information on vegetation, we excluded all LiDAR cloud

points that fell within built-up areas, defined by the very high accuracy

BAG (Basisadministratie Adressen en Gebouwen v.2015) vector data-

set (http://www.kadaster.nl), plus a buffer of 250 cm around them. The

LiDAR point cloud data were processed to grid cells with a spatial reso-

lution of 100 m 3 100 m, which was also used for the land use data

(see below). Before data processing, the point cloud was normalized to

ground level in order to obtain estimates of vegetation structure in

terms of height above the ground. From the resulting point cloud, a

total of 12 vegetation structure metrics that are thought to impact the

distribution of butterflies and other pollinators were obtained (see brief

description in Supporting Information Table S2): average, maximal and

minimal vegetation height, average squared height of vegetation, cover

gap, percentage vegetation between 0.5 and 2 m, percentage vegeta-

tion between 2 and 5 m, percentage vegetation between 5 and 10 m,

percentage vegetation between 10 and 20 m, vegetation height skew-

ness, vegetation height kurtosis and vegetation height SD. These

metrics represent the variation in vegetation structure across the verti-

cal axis but also render insight about vegetation structure along the
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horizontal axis, as for instance, the vegetation height SD. The LiDAR

point cloud data analysis was carried out with LAStools v.160429

(http://rapidlasso.com/LAStools) and Python v2.7 within ArcGIS

v10.2.2.

The land use map (LGN6 dataset) was obtained from the geo-

information department of Wageningen University (http://www.wage

ningenur.nl) for the year 2008 at an original resolution of 25 m 3 25 m

and with high classification accuracy (c. 95%; Hazeu, Schuiling, Dorland,

Oldengarm, & Gijsbertse, 2010). This land use map is thought to be

representative of the land use available in the period when species

were collected. The original land use map, with a thematic resolution of

39 land use classes, was reclassified to 10 aggregate classes (see

Supporting Information Table S3). The final reclassified land use classes

were as follows: agriculture, sandy soils vegetation, coniferous forest,

deciduous forest, mixed forest, managed grasslands, natural grassland,

moors/peat, marsh vegetation and urban. Based on the resulting map,

to account for the spatial resolution at which the species data were

collected and also the spatial resolution of the LiDAR-derived vegeta-

tion structure data, we calculated a total of 11 land use metrics at a

spatial resolution of 100 m 3 100 m. The calculated metrics have been

shown to influence the distribution of butterflies and other pollinators

(Aguirre-Guti�errez et al., 2015), the proportion of each land use class

and the number of land use classes in each grid cell. These metrics

characterized an important aspect of landscape quality, as well as land-

scape composition (Tscharntke et al., 2012). All land use calculations

were carried out with the Geospatial Modelling Environment (Beyer,

2012).

2.4 | Statistical analysis of drivers of functional and

species diversity

We carried out a correlation analysis on land use and vegetation struc-

ture variables and included only those with Pearson’s correlation coef-

ficients� |.70| to avoid distorting model predictions (Dormann et al.,

2013). Following this procedure, the following variables were excluded:

cover gap, kurtosis, maximal elevation, minimal elevation and percent-

age of vegetation between 10 and 20 m. All land use variables showed

low correlations and were therefore included in the final set of

variables used during the modelling step (see Supporting Information

Figure S2).

We used mixed-effects models with Gaussian error structure

(Zuur, Ieno, Walker, Saveliev, & Smith, 2009) to investigate whether

and how land use and vegetation structure drive functional diversity

and species diversity at a landscape level. We used grid cell identity as

TABLE 1 The characteristics of butterfly traits related to land use and vegetation structure

Trait Trait category Units Description Reference

Body size Dispersal Millimetres Wing span (Bink, 1992; WallisDeVries, 2014)

Flight period Dispersal/
reproduction

Count Number of weeks flying per year (Bink, 1992; WallisDeVries, 2014)

Population area Dispersal/
reproduction

Ordinal with
values 129

Area (in hectares) occupied by the
population (1: 1; 2: 4; 3: 16; 4: 64; 5:
260; 6: 1,000; 7: 4,000; 8: 16,000; 9:
>16,000)

(Bink, 1992; WallisDeVries, 2014)

Larval food preference Diet Rank values
12 4

Diet preference of larvae: Number of
host plants (1: monophagous; 2:
oligophagous; 3: polyphagous (multiple
species, one plant family); 4: polypha-
gous (multiple species, more than one
plant family)

(WallisDeVries, 2014)

Larval food dependence
on nitrogen

Diet Ellenberg ni-
trogen value

Nitrogen value of host plants: Average
Ellenberg nitrogen indicator values of
butterflies’ larval host plants (describing
soil fertility conditions and nitrogen
preferences)

(Eliasson, Ryrholm, & Gärdenfors,
2005; Ellenberg et al., 1991; Fujita,
van Bodegom, & Witte, 2013;
Geraedts, 1986; Heath & Emmet,
1989)

Habitat specialization Habitat use Specialist or
generalist

Predominant association with anthro-
pogenic CORINE land cover habitat
types (agricultural and urban as: gen-
eralists) or not (semi-natural habitats:
specialists)

(van Swaay, Warren, & Loïs, 2006;
WallisDeVries, 2014)

Moisture Habitat use Ordinal with
values 125

1: dry and warm; 2: dry; 3: average or
indifferent; 4: moist; 5: bogs and
marshland

(Bink, 1992; WallisDeVries, 2014)

Habitat openness Habitat use Ordinal with
values 1210

Niche breadth relative to the openness
of the landscape. Range is from from 1:
closed forest; 5: park landscape; to 10:
short grassland

(Bink, 1992)

Note. These traits are hypothesized to be ‘response’ traits (Díaz et al., 2013) to land use and vegetation structure and are grouped in the following four
trait categories: dispersal, reproduction, habitat use and diet.
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a random factor to account for the sampling structure, because more

than one sampling location may fall within the same 100 m 3 100 m

grid cell. Moreover, sampling locations closer to each other may be

more similar than ones that are further apart. To remove this effect, we

first computed the Moran’s I spatial autocorrelation test, which

resulted in significant correlation (p< .001). Therefore, we tested dif-

ferent mixed-effects models with and without spatial autocorrelation

structures (linear, exponential, Gaussian and spherical), including the

grid cell identity as a random factor. The preliminary results showed

that the model without the spatial autocorrelation structure but with

the grid cell identity as a random factor was the best model based on

their Bayesian information criteria (BIC). This suggested that the ran-

dom factor already accounted for the correlations present in the data.

This model structure was used for further analysis.

We constructed two mixed-effects models using the grid cell iden-

tity as a random factor, one to investigate the extent to which vegeta-

tion structure and land use explained functional diversity and one to

explain species diversity as a function of the same variables. As our

objective is to investigate the main differences between vegetation

structure and land use as drivers of functional and species diversity, we

did not include any interaction terms between them. We selected the

most parsimonious model based on the BIC. The stepwise backward

and forward model selection based on the BIC was chosen because

this method penalizes more complex models by excluding terms that

explain only little variability (Aho, Derryberry, & Peterson, 2014). For

comparison, we also kept all candidate models with DBIC lower than

two units (see Results section). We also calculated the relative impor-

tance of the vegetation structure and land use variables in explaining

functional and species diversity. For each of the land use and vegeta-

tion structure variables, their importance was calculated as the sum of

the Akaike weights over all model combinations (from the model selec-

tion explained above) where the variable is present (Burnham &

Anderson, 2003). As the number of model combinations where each of

the variables is present is the same across variables, their importance

values are directly comparable (Burnham & Anderson, 2003). All analy-

ses were carried out in R with the ‘ape’, ‘lme4’ and ‘MuMIn’ packages.

3 | RESULTS

3.1 | Functional diversity

We included 66 species in our functional diversity analysis (FDis) of

each community (100 m 3 100 m grid cell) of a total of 6,075 sampling

locations. After selecting the most parsimonious model based on the

BIC, our first best mixed-effects model (BIC 226,005.44) was signifi-

cantly better than our initial full model (BIC 225,930.57; Table 2). Our

first best model (out of three) contained the same or a broader array of

explanatory variables as the subsequent models, with the exception of

agriculture; we therefore focus on the first best model (see Supporting

Information Table S4). According to this model, functional diversity

(FDis) of butterflies is mainly driven by a mixed set of structural varia-

bles, height of vegetation and distribution of vegetation at different

strata, and land use variables, specifically natural grassland, sandy soils

vegetation, marsh vegetation and urban areas (Table 2 and Figure 1).

The average height of vegetation and vegetation density in the 0.5–

2 m stratum presented positive coefficients with an average FDis of

c. 0.15, which increased up to just below 0.25 for locations that contain

40% of their vegetation between 0.5 and 2 m (Figure 1 and Supporting

Information Table S4). In contrast, an increase in vegetation in the 2–

5 m stratum generated a loss of almost one-third of FDis, decreasing

from c. 0.15 down to 0.10. Overall, as the proportion of only one land

use type increased in the landscape the functional diversity decreased

without exception from the selected land use variables in the best

mixed-effects model (Figure 1 and Table 1). In our prediction of FDis

for the entire area of The Netherlands, the FDis estimates ranged from

0.04 to close to 0.31 (see Figure 2a). The communities with higher

functional diversity (FDis c. 0.31) occupy a great part the centre of the

country around forest–heathland complexes with heterogeneous vege-

tation structure; meanwhile, patches of coastal dune areas in the west

showed the lowest functional diversity (c. 0.4; Figure 2a).

3.2 | Species diversity

When investigating species diversity, after selecting the most parsimo-

nious model based on the BIC, our first best mixed-effects model (BIC

15,017.83) was significantly better than our initial full model (BIC

15,063.62; Table 2). Our first best model (out of four) contained the

same explanatory variables as the subsequent models, with exception

of the proportion of coniferous forest and moors/peat. Given the high

change in BIC values of the subsequent models (> 1.5), we focus here

on the first best model results (see Supporting Information Table S5 for

the results of all models).

Species diversity (Fisher’s a) increased with the average vegetation

height until reaching an optimum (at c. 8.6 m) in semi-open conditions

when compared with its squared height (Figure 3). Moreover, the amount

of vegetation between 0.5 and 2 m and the increase in heterogeneity of

vegetation height (vegetation height SD), which had almost the same pos-

itive effect size, led to increases in Fisher’s a of c. 1, increasing from c. 4

to close to 5 (Figure 3). Our first best mixed-effects model showed a neg-

ative relationship between high proportions of any land use type included

and species diversity (Table 2 and Supporting Information Table S5).

Hence, more homogeneous landscapes in terms of land use tend to be

less diverse in butterfly species than other landscapes composed by dif-

ferent land use types in different proportions (Figures 2b and 3). Based

on our best model, the predicted species diversity (Fisher’s a) for The

Netherlands ranged between 0.51 and almost 7.5 (Figure 2b). The areas

with higher observed species diversity were found in the east part of The

Netherlands, almost across its full latitudinal gradient, in areas with differ-

ent proportions of forest vegetation as well as in the coastal areas with

sandy soils vegetation in the west (Figure 2b).

3.3 | Importance of drivers of functional and species

diversity

The analysis of variable importance showed that both land use and

vegetation structure parameters drive functional and species diversity.
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However, the identity of these drivers generally differed between

those defining functional diversity levels and species diversity (Figure

2c). The relationship between functional diversity and the species

diversity in the landscape, each 100 m 3 100 m, was weak (Pearson’s

correlation5 .34; Figure 4a). Standardizing the functional and species

diversity and computing their spatially explicit difference shows that in

56% of The Netherlands its functional diversity is lower than its species

diversity; this is thus low species trait diversity (Figure 4b). For func-

tional and species diversity, there were six vegetation structure and

land use parameters with importance values > 0.90 (range 0–1). Three

of these parameters were highly important for both functional and spe-

cies diversity, namely the average vegetation height, the percentage of

vegetation between 0.5 and 2 m and the proportion of marsh vegeta-

tion in the landscape, all with the same direction of effect (Figure 2c).

Conversely, the amount of vegetation between 5 and 10 m, vegetation

skewness and the number of land use classes showed some of the low-

est importance (� 0.03) in driving both the functional and species

diversity of butterflies (Figure 2c). For functional diversity, only one

land use variable, the proportion in urban areas, presented intermediate

importance (0.68), with all other parameters showing low importance

values (� 0.38) in driving functional diversity. In comparison to the

drivers of functional diversity, for species diversity we detected a

slowly decreasing gradient in variable importance of most vegetation

and land use parameters, ranging in importance between 0.71 and 0.01

(Figure 2c).

4 | DISCUSSION

Much attention has been given to the importance of having species-

rich communities in comparison to the importance of having a species

traits-rich system (but see Martins et al., 2015) and even less to the

interrelationship between functional diversity and species diversity and

what drives their distribution patterns. Recent studies have emphasized

the roles that different land use types play in defining the distribution

of biodiversity (R€osch, Tscharntke, Scherber, & Bat�ary, 2013;

Tscharntke et al., 2012). However, little is known about how the

TABLE 2 Effects of land use and vegetation structure on functional and species diversity of butterflies

Functional diversity: Dispersion Species diversity: Fisher’s a

Explanatory variables Full model Best model 1 Full model Best model 1

Vegetation structure

Average vegetation height (1) (1) (1) (1)

Percentage of vegetation between 0.5 and 2 m (1) (1) (1) (1)

Percentage of vegetation between 2 and 5 m (2) (2) (1)

Percentage of vegetation between 5 and 10 m (2) (2)

Average vegetation squared height (2) (2) (2)

Vegetation skewness (2) (1)

Vegetation height SD (2) (1) (1)

Land use

Number of land use classes (1) (1)

Proportion of agriculture (1) (2) (2)

Proportion of coniferous forest (2) (2)

Proportion of deciduous forest (2) (2) (2)

Proportion of mixed forest (2) (2) (2)

Proportion of managed grassland (2) (2) (2)

Proportion of natural grassland (2) (2) (2) (2)

Proportion of moors and peat (2) (2)

Proportion of sandy soils vegetation (2) (2) (2) (2)

Proportion of marsh vegetation (2) (2) (2) (2)

Proportion of urban areas (2) (2) (2) (2)

BIC 225,930.57 226,005.44 15,063.62 15,017.83

Note. The most parsimonious model selected by means of the Bayesian information criteria (BIC) is shown together with other models with a DBIC<2.
The plus or minus signs within parenthesis represent the direction of the effect (positive or negative) of a given land use and vegetation structure
parameter on functional and/or species diversity. Empty spaces indicate that the given parameter was not included in the final best model. For a
detailed version of the table, see Supporting Information Tables S4 and S5.
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vertical and horizontal structural arrangement of vegetation influences

species distributions, and it is not yet clear what the combined effects

of vegetation structure and land use type are, neither on functional

diversity nor on species diversity, for most species groups (but see Jan-

kowski et al., 2013; Moretti et al., 2013). One of the reasons for this

gap has been the lack of data, especially related to vegetation structural

parameters at large spatial scales. Here, we gathered butterfly presence

data from a long-term monitoring scheme, land use and LiDAR-derived

vegetation structural parameters to investigate their effect on the func-

tional and species diversity of butterflies at a countrywide scale. But-

terflies, like other invertebrates, carry out important ecosystem

services and functions (e.g., acting as pollinators and environmental

quality indicators) around the world and in natural and managed eco-

systems (Fleishman & Murphy, 2009; Scheper et al., 2013), and their

distribution is greatly driven by land use patterns at local and

landscape-level scales (Gonz�alez-Varo et al., 2013). Our study clearly
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FIGURE 1 Functional diversity of butterflies, represented by the functional dispersion index, explained by land use and vegetation

structural parameters. Only the parameters present in the best model are shown. Average predictions695% confidence intervals
(grey bands) are shown. The land use parameters are presented as their proportion in the landscape (each 100 m 3 100 m grid cell).
For statistical details of the best model see Supporting Information Table S4

FIGURE 2 Distribution of different facets of butterflies’ biodiversity, functional diversity and species diversity, in The Netherlands. (a)
Modelled functional diversity (dispersion index) based on butterflies’ species presence records from the period 2008–2015, functional traits
(see Table 1) and land use and vegetation structure parameters (see Methods). (b) Modelled butterflies’ species diversity (Fisher’s a), based
on species records from the period 2008–2015, as a function of land use and vegetation structure parameters. (c) Comparison of the
importance values of each land use (brown) and vegetation structure (black) parameter resulting from the full mixed-effects models (see
Methods) for functional diversity (functional dispersion) and species diversity (Fisher’s a; see Methods). AG5 proportion of agriculture;
ASH5 average vegetation squared height; AVH5 average vegetation height; CF5 proportion of coniferous forest; DF5proportion of
deciduous forest; D0.5–2m5 vegetation between 0.5 and 2 m; D2–5m5 vegetation between 2 and 5 m; D0.5–2m5 vegetation between 5
and 10 m; MF5 proportion of mixed forest; MG5 proportion of managed grassland; MP5moors and peat; NG5 proportion of natural
grassland; NL5 number of land use classes; SD5 vegetation height standard deviation; SK5 vegetation skewness; SV5proportion of sandy
soils vegetation; SW5 proportion of marsh vegetation; UR5proportion of urban areas
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FIGURE 3 Species diversity of butterflies, represented by the Fisher’s a, explained by land use and vegetation structural parameters. Only
the parameters present in the best model are shown. Average predictions 6 95% confidence intervals (grey bands) are shown. The land use
parameters are presented as their proportion in the landscape (each 100 m 3 100 m grid cell). For the complete statistical details of the
best model see Supporting Information Table S4

FIGURE 4 Statistical and spatial relationship between functional and species diversity of butterflies in The Netherlands. (a) The
relationship between the observed functional and species diversity in the sampling locations (Pearson’s correlation5 .34). Functionally
diverse areas can contain low (brown–light green) to high diversity of species (brown–dark green) showing that high species diversity does
not necessarily translate into high fucntional diversity. (b) The predicted spatial relationship between functional and species diversity. This
was computed as the 0 to 1 standardized values of functional diversity minus species diversity. Areas with high functional and low species
diversity are shown in brown–yellow colours (highest difference was 0.53), highlighting more resilient areas against land use changes. The
areas with high species and low functional diversity (strongest difference was 20.49), and thus more fragile against land use changes, are
shown in green–blue colours
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shows that high species diversity does not translate into high functional

diversity and that they are mainly driven by different sets of structural

and land use parameters. Moreover, we show that it is a tight combina-

tion of both vegetation structural characteristics and land use parame-

ters that defines functional and species diversity of butterflies.

4.1 | Interacting patterns of functional diversity and

species diversity

We detected a mismatch between functional diversity and species

diversity of butterflies and showed that their relationship is nonlinear.

Although high functional diversity is often found with higher species

diversity levels, low functional diversity can also be observed with high

species diversity. It has been suggested that communities with low

functional diversity and low trait redundancy might be more suscepti-

ble to environmental changes than functionally richer communities

(Oliver et al., 2015). However, whether low functional diversity really

implies low resilience may depend on the type of disturbance and on

the species response traits analysed (Mori et al., 2013). As shown by

our study, it is striking how areas that contain high species diversity do

not always maintain high functional diversity (see the western dunes

and some forested areas of the study area). This is most probably

attributable to biotic homogenization given by the presence of only a

set of vegetation-specialized species where more structurally homoge-

neous vegetation occurs. Moreover, this suggests that the standard

community of butterflies already covers most of the functional trait

space available, and thus species-rich communities do not substantially

increase the functional diversity. However, these species-richer com-

munities might increase trait redundancy and thus resilience (Mori

et al., 2013). The low levels of functional and species diversity of but-

terflies detected for a great part of the study area may well be linked

to the fact that land use types such as agriculture and managed grass-

lands occupy more than half of the country (http://www.fao.org/coun-

tryprofiles). These are precisely the areas that contain structurally

homogeneous vegetation. The predicted low functional and species

diversity for these areas may be the result of historical land use (Hazeu

et al., 2010; Knol, Kramer, & Gijsbertse, 2004) and climate (Klein Tank,

2004) changes that have occurred, especially during the last half-

century in The Netherlands.

It is striking that more than half of the study area is predicted to

have lower levels of functional diversity in comparison to their spe-

cies diversity, as these areas with low functional diversity may suffer

the most from changes in environmental conditions (Oliver et al.,

2015). This highlights that conserving only those areas with high

species diversity would not necessarily conserve a functionally

diverse ecosystem. In the same manner, focusing conservation only

in high functional areas may mean disregarding the conservation of

functionally redundant species. We show that for butterflies, areas

with more structurally complex vegetation in the lower level are

functionally more diverse, as shown in some parts around the

Veluwe area (central region of the country). Hence, these commun-

ities may be more resilient towards environmental changes. Main-

taining the areas with high functional diversity is particularly

important for The Netherlands, where most of the landscapes are

highly managed and dominated by homogeneous land use types at

large spatial scales.

4.2 | Functional diversity: Relationship with

vegetation structure and land use

We found that there is not an exact match between the drivers of

functional diversity and species diversity, especially in those varia-

bles related to land use. However, most vegetation structure varia-

bles determining functional diversity were also important for

determining species diversity (see Table 1). The butterflies’ habits of

dispersal, reproduction, diet and habitat use given by their functional

traits may explain the high importance of vegetation structure. This

is because areas with higher habitat heterogeneity may render more

varied niches and thus different sets of species adapted to them

according to their specific traits (Davies & Asner, 2014; Tews et al.,

2004). We expected that the more structurally heterogeneous areas

would facilitate the presence of higher functional diversity in com-

parison to more homogeneous areas. This was the case when most

of the vegetation was short, with some large trees (effect of average

vegetation height), which can be observed by the high functional

diversity around forested areas, but not per se within old tall forest

(see the central region in Figure 2a). In particular, the vegetation

height and the proportion of vegetation at different height strata

can affect the microclimatic conditions, such as moisture, which are

related to the response traits we used (see Table 1). Microclimatic

conditions are hypothesized to have a great effect on the survival

and development of butterflies because they also control for the

availability of larval habitats and adult nectar sources in the land-

scape (Suggitt et al., 2015). Thus, these landscape characteristics can

greatly determine the local functional diversity.

The amount of each type of land use in the landscape strongly

defined functional diversity. In contrast to analysis of species diversity,

the effects that the amount of different land use types have on func-

tional diversity of pollinators, and specifically of butterflies, has not

been broadly examined (but see Cariveau, Williams, Benjamin, & Win-

free, 2013; Rader, Bartomeus, Tylianakis, & Lalibert�e, 2014). We

showed that three of four land use types that drive functional diversity

of butterflies are mostly composed of short vegetation (vegetation in

sandy soils, marsh vegetation and natural grasslands), and steep

increases in their extent in the landscape led to lower functional diver-

sity. Increases in the proportion of only one land use type reduces the

availability of different resources that other land use types may offer.

Hence, the decline of functional diversity when any of the above-

mentioned land use types increases (e.g., sandy soils vegetation) should

not be considered as a negative effect pertaining to the land cover

type per se but to the decrease in the variety of available niches that

are otherwise rendered by more heterogeneous landscapes. This is

especially important for butterflies because they inhabit different

vegetation and feed on different sources at different life stages (R€osch

et al., 2013).
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4.3 | Species diversity: Relationship with vegetation

structure and land use

The species diversity patterns we show in this analysis are consistent

with other small-scale analyses carried out in The Netherlands that also

included information on climate and land use and recently reported on

species distributions of butterflies (Aguirre-Guti�errez et al., 2015; Wall-

isDeVries, 2014). However, those studies did not investigate how the

structural arrangement of vegetation drives species distributions. Previ-

ous studies suggest that higher diversity can be found in the east in

comparison to the west of The Netherlands (Aguirre-Gutierrez et al.,

2016), a pattern that we have also found but at much finer spatial reso-

lution, in this way detecting butterfly habitats related to land use type

and the arrangement of vegetation. The higher species diversity pre-

dicted in the eastern regions could be attributable to the fact that

more (semi-) natural areas with different levels of vegetation succes-

sion are found there in comparison to the western regions, where agri-

cultural landscapes dominate (see map provided by Hazeu et al., 2010).

We show that the spatial arrangement of vegetation in the landscape

plays a major role in determining the butterflies’ diversity distribution

patterns, with more structural and qualitative heterogeneous areas also

sustaining higher levels of diversity. Similar findings have been reported

for other regions (e.g., north-west U.S.A.; Hess et al., 2013) for which

the structural arrangement of vegetation, especially in the lower strata,

is considered a main driver of the presence and abundance of different

butterfly species. M€uller and Brandl (2009) detected that the heteroge-

neity of vegetation height (as the SD) drives the richness and diversity

of other arthropods, such as beetles, in a mixed forest in Germany. In

addition, similar to our results, M€uller, Bae, R€oder, Chao, and Didham

(2014) showed that the vegetation structural heterogeneity acts as a

main driver of arthropod diversity in coniferous forests.

Most types of land use were important for driving the species

diversity of butterflies, in contrast to those defining functional diver-

sity, which were related to a few vegetation types. This suggests that

areas containing a highly varied landscape of land use types might

enhance the diversity of species (Perović et al., 2015). However, in

most instances these species may share most of their trait characteris-

tics and thus represent low functional diversity, as shown for some for-

ested and coastal regions in The Netherlands. Furthermore, we show

that areas dominated by grasslands are within the landscapes with the

lowest predicted species diversity. This could be related to a lack of

vegetation structural heterogeneity but also to a lack of feeding resour-

ces, as the grasslands in The Netherlands are, for the most part, inten-

sively managed ecosystems with high inputs of fertilizers (Oenema, van

Ittersum, & van Keulen, 2012). The high input of fertilizer could mean

that only butterflies specialized in diets with a high nitrogen level

occupy these areas, reducing the possible species and also, most prob-

ably, functional diversity in the landscape.

4.4 | Conclusions

We show that high functional diversity can often be covered by a few

species with a varied set of traits. This suggests that ecosystem

functioning may often be determined by a few species. Thus, the con-

servation and management for high levels of species richness may

actually require a different focus from the conservation and manage-

ment for ecosystem functioning (see also Kleijn, Rundl€of, Scheper,

Smith, & Tscharntke, 2011). Overall, our results call for a more integra-

tive analysis of biodiversity distributions, accounting not only for the

distribution of species but also for the distribution of traits and thus of

functional diversity in the landscape. Moreover, these analyses should

more directly relate functional diversity to the communities’ resilience

towards specific environmental changes. We suggest that future stud-

ies on biodiversity distributions should incorporate as far as possible

information not only on the type of landscape but also on its vegeta-

tion structural diversity, because this can define patterns and processes

of functional and species distributions.
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