829 research outputs found

    Greenstone belt tectonics: Thermal constraints

    Get PDF
    Archaean rocks provide a record of the early stages of planetary evolution. The interpretation is frustrated by the probable unrepresentative nature of the preserved crust and by the well known ambiguities of tectonic geological synthesis. Broad constraints can be placed on the tectonic processes in the early Earth from global scale modeling of thermal and chemical evolution of the Earth and its hydrosphere and atmosphere. The Archean record is the main test of such models. Available general model constraints are outlined based on the global tectonic setting within which Archaean crust evolved and on the direct evidence the Archaean record provides, particularly the thermal state of the early Earth

    Kinetics of CO2-fluid-rock reactions in a basalt aquifer, Soda Springs, Idaho

    Get PDF
    The dissolution of silicate minerals by CO2-rich fluids and the subsequent precipitation of CO2 as carbonate minerals represent a means of permanently storing anthropogenic CO2 waste products in a solid and secure form. Modelling the progression of these reactions is hindered by our poor understanding of the rates of mineral dissolution–precipitation reactions and mineral surface properties in natural systems. This study evaluates the chemical evolution of groundwater flowing through a basalt aquifer, which forms part of the leaking CO2-charged system of the Blackfoot Volcanic Field in south-eastern Idaho, USA. Reaction progress is modelled using changes in groundwater chemistry by inverse mass balance techniques. The CO2-promoted fluid–mineral reactions include the dissolution of primary plagioclase, orthoclase, pyroxene and gypsum which is balanced by the precipitation of secondary albite, calcite, zeolite, kaolinite and silica. Mineral mole transfers and groundwater flow rates estimated from hydraulic head data are used to determine the kinetics of plagioclase and orthoclase feldspar dissolution. Plagioclase surface area measurements were determined using the evolution of the U-series isotope ratios in the groundwater and are compared to published surface area measurements. Calculated rates of dissolution for plagioclase range from 2.4 × 10−12 to 4.6 × 10−16 mol/m2/s and orthoclase from 2.0 × 10−13 to 6.8 × 10−16 mol/m2/s respectively. These feldspar reaction rates, correlate with the degree of mineral–fluid disequilibrium and are similar to the dissolution rates for these mineral measured in other natural CO2-charged groundwater systems

    On discrimination between carbonate and silicate inputs to Himalayan rivers

    Get PDF
    We review new and published analyses of river waters, bedloads and their constituent minerals from the Dhauli Ganga and Alaknanda, headwaters of the Ganges in Garhwal, and the Marsyandi in Nepal and their tributaries. These data are used to discriminate between the inputs of major cations and Sr from silicate and carbonate sources. Methods of estimating the proportion of the carbonate and silicate inputs to river waters using mixing arrays in Sr-Ca-Mg-Na-K 87Sr/86Sr space are shown to suffer from systematic correlations between the magnitude of the precipitation of secondary calcite and the fraction of the silicate component. This results in factor-of two overestimates of the fractions of silicate-derived Ca, Mg and Sr. To correct for this the magnitude of secondary calcite precipitated and relative fractions of silicate and carbonate-derived cations are instead calculated by modeling the displacement of water compositions from the compositions of the carbonate and silicate components of the bedload in subsets of Sr-Ca-Mg-Na-K 87Sr/86Sr space. The compositions of the carbonate and silicate end-members in the bedload are determined by sequential leaching. The results of this modeling are compared with modeling of the modal mineral inputs to waters where mineral compositions are derived from electronmicroprobe analyses of the minerals in the bedload. In the upper Marsyandi catchment, which drains low-grade Tethyan Sedimentary Series formations, a set of mainstem samples collected over a two-year period define tight correlations in Sr-Ca-Mg-Na-K- 87Sr/86Sr space. Modeling of the magnitude of secondary carbonate precipitation and fractions of silicate-derived Ca, Mg and Sr in Sr-Ca-Mg 87Sr/86Sr space gives selfconsistent results that are compatible with both the calculations of mineral modes and published Mg-isotopic compositions, if the ratio of chlorite to biotite weathering is high or if there is another silicate source of Mg. These calculations imply that between 12 and 31 percent of the Sr and 44 and 72 percent of the Mg is derived from silicate minerals where the range reflects the seasonal change in the ratio of silicate-derived to carbonate-derived cations. Modeling in Sr-Ca-Na and/or K space is inconsistent with the Sr-isotopic and Mg-isotopic constraints and we conclude that in this catchment dissolution of Na and K are incongruent relative to Sr-Ca-Mg. Potassium is preferentially retained in micas whereas the controls on Na are unclear. Modeling of the catchments underlain by High Himalayan Crystalline and Lesser Himalayan Series in Garhwal is complicated by the presence of dolomite as well as calcite in the carbonate and the results imply that dolomite dissolves faster in the acetic acid leaches than in nature. Up to 60 percent of the Sr in the catchment on High Himalayan Crystalline Series and 20 to 30 percent of Sr in the catchments on Lesser Himalayan Series are estimated to be derived from silicates. However it should be noted that the element budgets are not all self-consistent and the use of bedrock-element ratios to model the sources of chemical inputs to river waters remains subject to uncertainties

    Archaeological Geophysical Prospection in Peatland Environments: case studies and suggestions for future practice

    Get PDF
    Peatland environments, in contrast to ‘dry-land’ sites, preserve organic material, including anthropogenic objects, because they are anaerobic, and are therefore of great importance to archaeology. Peat also preserves macro- and micro- paleoenvironmental evidence and is the primary resource for understanding past climates and ecology. Archaeological sites often lie within or at the base of wet, deep, homogenous peat rendering them invisible to surface observers. As a result, they most often c..

    The Joint Observation in Neonatology and Neurodevelopmental Outcome of Preterm Infants at Six Months Corrected Age: Secondary Outcome Data from a Randomised Controlled Trial.

    Get PDF
    This study aimed to evaluate the impact of a standardised joint observation (JOIN) performed in the neonatal intensive care unit (NICU) on the neurodevelopment of preterm infants at six months corrected age (CA) compared with a preterm control group. In this monocentric interventional randomised controlled trial, we allocated 76 mothers and their preterm neonates to either JOIN, an early one-session intervention, or standard care during the NICU hospitalisation. The neurodevelopment of the preterm infants was assessed by standardised developmental tests at six months CA and compared between the intervention and the control groups. This randomised controlled trial was registered on clinicaltrials.gov (NCT02736136) in April 2016. Sixty-five infants underwent neurodevelopmental assessment at six months CA. There were no significant differences between the two groups in neurodevelopmental outcome measures. The JOIN intervention was not associated with significant improvement in neurodevelopment at six months CA in preterm infants

    Kinetics of CO2-fluid-rock reactions in a basalt aquifer, Soda Springs, Idaho

    Get PDF
    The dissolution of silicate minerals by CO2-rich fluids and the subsequent precipitation of CO2 as carbonate minerals represent a means of permanently storing anthropogenic CO2 waste products in a solid and secure form. Modelling the progression of these reactions is hindered by our poor understanding of the rates of mineral dissolution–precipitation reactions and mineral surface properties in natural systems. This study evaluates the chemical evolution of groundwater flowing through a basalt aquifer, which forms part of the leaking CO2-charged system of the Blackfoot Volcanic Field in south-eastern Idaho, USA. Reaction progress is modelled using changes in groundwater chemistry by inverse mass balance techniques. The CO2-promoted fluid–mineral reactions include the dissolution of primary plagioclase, orthoclase, pyroxene and gypsum which is balanced by the precipitation of secondary albite, calcite, zeolite, kaolinite and silica. Mineral mole transfers and groundwater flow rates estimated from hydraulic head data are used to determine the kinetics of plagioclase and orthoclase feldspar dissolution. Plagioclase surface area measurements were determined using the evolution of the U-series isotope ratios in the groundwater and are compared to published surface area measurements. Calculated rates of dissolution for plagioclase range from 2.4 × 10−12 to 4.6 × 10−16 mol/m2/s and orthoclase from 2.0 × 10−13 to 6.8 × 10−16 mol/m2/s respectively. These feldspar reaction rates, correlate with the degree of mineral–fluid disequilibrium and are similar to the dissolution rates for these mineral measured in other natural CO2-charged groundwater systems

    The prospective relationship between postpartum PTSD and child sleep: A 2-year follow-up study.

    Get PDF
    The main aim of this study was to examine the prospective impact of maternal postpartum PTSD on several standardized child sleep variables two years postpartum in a large, population-based cohort of mothers. Moreover, we investigated the influence of numerous potential confounding maternal and child factors. Finally, we tested potential reverse temporal associations between child sleep eight weeks postpartum and maternal PTSD symptoms two years postpartum. This study is part of the population-based Akershus Birth Cohort, a prospective cohort study at Akershus University Hospital, Norway. Data from the hospital's birth record, from questionnaires at 17 weeks gestation, eight weeks and two years postpartum were used. At two years postpartum, 39% of the original participants could be retained, resulting in a study population of n = 1480. All child sleep variables significantly correlated with postpartum PTSD symptoms were entered into multiple linear regression analyses, adjusting for confounding factors. Postpartum PTSD symptoms were related to all child sleep variables, except daytime sleep duration. When all significant confounding factors were included into multivariate regression analyses, postpartum PTSD symptoms remained a significant predictor for number and duration of night wakings (β = 0.10 and β = 0.08, respectively), duration of settling time (β = 0.10), and maternal rating of their child's sleep problems (β = 0.12, all p<.01. Child sleep at eight weeks postpartum was not significantly related to maternal sleep two years postpartum when controlling for postpartum PTSD at eight weeks. Child outcomes were based on maternal reporting and might be influenced by maternal mental health. Our results showed for the first time that maternal postpartum PTSD symptoms were prospectively associated with less favorable child sleep, thus increasing the risk of developmental or behavioral problems through an indirect, but treatable pathway. Early detection and treatment of maternal postpartum PTSD may prevent or improve sleep problems and long-term child development

    High-precision determination of lithium and magnesium isotopes utilising single column separation and multi-collector inductively coupled plasma mass spectrometry

    Get PDF
    Li and Mg isotopes are increasingly used as a combined tool within the geosciences. However, established methods require separate sample purification protocols utilising several column separation procedures. This study presents a single-step cation-exchange method for quantitative separation of trace levels of Li and Mg from multiple sample matrices

    Translocation-independent dimerization of the EcoKI endonuclease visualized by atomic force microscopy

    Get PDF
    AbstractBacterial type I restriction/modification systems are capable of performing multiple actions in response to the methylation pattern on their DNA recognition sequences. The enzymes making up these systems serve to protect the bacterial cells against viral infection by binding to their recognition sequences on the invading DNA and degrading it after extensive ATP-driven translocation. DNA cleavage has been thought to occur as the result of a collision between two translocating enzyme complexes. Using atomic force microscopy (AFM), we show here that EcoKI dimerizes rapidly when bound to a plasmid containing two recognition sites for the enzyme. Dimerization proceeds in the absence of ATP and is also seen with an EcoKI mutant (K477R) that is unable to translocate DNA. Only monomers are seen when the enzyme complex binds to a plasmid containing a single recognition site. Based on our results, we propose that the binding of EcoKI to specific DNA target sequences is accompanied by a conformational change that leads rapidly to dimerization. This event is followed by ATP-dependent translocation and cleavage of the DNA
    corecore