173 research outputs found
Resource sharing leads to the emergence of division of labour
Division of labour occurs in a broad range of organisms. Yet, how division of labour can emerge in the absence of pre-existing interindividual differences is poorly understood. Using a simple but realistic model, we show that in a group of initially identical individuals, division of labour emerges spontaneously if returning foragers share part of their resources with other group members. In the absence of resource sharing, individuals follow an activity schedule of alternating between foraging and other tasks. If non-foraging individuals are fed by other individuals, their alternating activity schedule becomes interrupted, leading to task specialisation and the emergence of division of labour. Furthermore, nutritional differences between individuals reinforce division of labour. Such differences can be caused by increased metabolic rates during foraging or by dominance interactions during resource sharing. Our model proposes a plausible mechanism for the self-organised emergence of division of labour in animal groups of initially identical individuals. This mechanism could also play a role for the emergence of division of labour during the major evolutionary transitions to eusociality and multicellularity
A new experimental setup for studying ants and similar-sized insects
Laboratory studies on insects face the dual challenge of maintaining organisms under artificial conditions, and in reduced spaces while mimicking the species’ ecological requirements as much as possible. Over decades, myrmecologists have developed and continuously improved laboratory methods and artificial nests for rearing ants. However, the setups commonly used to house colony fragments of few individuals or even isolated individuals present disadvantages such as insufficient ventilation, difficult access to specific workers, and problems with water delivery. Here, we developed and tested a new setup for keeping ants or similar sized insects in small groups. The setup consisted of a Petri dish containing a piece of plaster connected underneath to a water tank by a sponge. The sponge is immersed in the water on one side and embedded in the plaster on the other side, maintaining the plaster permanently moist and thus offering a water source to the ants. We tested the setup with two ant species of different sizes, Platythyrea punctata and Cardiocondyla obscurior in feeding, starvation, and desiccation conditions. Our results showed that our new setup worked equally well for both species in all conditions in comparison to a more conventional setup with the advantage of reducing maintenance costs and ant manipulation, but also preventing death by drowning and offering water ad libitum. The setup was quick to build, with cheap and reusable materials for further experiments. Therefore, we are confident that it will facilitate future studies on isolated or small groups of individuals and that such a standardized setup will make future studies more comparable
Oxidative stress and senescence in social insects:A significant but inconsistent link?
The life-prolonging effects of antioxidants have long entered popular culture, but the scientific community still debates whether free radicals and the resulting oxidative stress negatively affect longevity. Social insects are intriguing models for analysing the relationship between oxidative stress and senescence because life histories differ vastly between long-lived reproductives and the genetically similar but short-lived workers. Here, we present the results of an experiment on the accumulation of oxidative damage to proteins, and a comparative analysis of the expression of 20 selected genes commonly involved in managing oxidative damage, across four species of social insects: a termite, two bees and an ant. Although the source of analysed tissue varied across the four species, our results suggest that oxidative stress is a significant factor in senescence and that its manifestation and antioxidant defenses differ among species, making it difficult to find general patterns. More detailed and controlled investigations on why responses to oxidative stress may differ across social species may lead to a better understanding of the relations between oxidative stress, antioxidants, social life history and senescence. This article is part of the theme issue 'Ageing and sociality: why, when and how does sociality change ageing patterns
Physical and land-cover variables influence ant functional groups and species diversity along elevational gradients
Of particular importance in shaping species assemblages is the spatial heterogeneity of the environment. The aim of our study was to investigate the influence of spatial heterogeneity and environmental complexity on the distribution of ant functional groups and species diversity along altitudinal gradients in a temperate ecosystem (Pyrenees Mountains). During three summers, we sampled 20 sites distributed across two Pyrenean valleys ranging in altitude from 1,009 to 2,339 m by using pitfall traps and hand collection. The environment around each sampling points was characterized by using both physical and land-cover variables. We then used a self-organizing map algorithm (SOM, neural network) to detect and characterize the relationship between the spatial distribution of ant functional groups, species diversity, and the variables measured. The use of SOM allowed us to reduce the apparent complexity of the environment to five clusters that highlighted two main gradients: an altitudinal gradient and a gradient of environmental closure. The composition of ant functional groups and species diversity changed along both of these gradients and was differently affected by environmental variables. The SOM also allowed us to validate the contours of most ant functional groups by highlighting the response of these groups to the environmental and land-cover variables
Trail formation based on directed pheromone deposition
We propose an Individual-Based Model of ant-trail formation. The ants are
modeled as self-propelled particles which deposit directed pheromones and
interact with them through alignment interaction. The directed pheromones
intend to model pieces of trails, while the alignment interaction translates
the tendency for an ant to follow a trail when it meets it. Thanks to adequate
quantitative descriptors of the trail patterns, the existence of a phase
transition as the ant-pheromone interaction frequency is increased can be
evidenced. Finally, we propose both kinetic and fluid descriptions of this
model and analyze the capabilities of the fluid model to develop trail
patterns. We observe that the development of patterns by fluid models require
extra trail amplification mechanisms that are not needed at the
Individual-Based Model level
Predation efficiency of Anopheles gambiae larvae by aquatic predators in western Kenya highlands
Abstract Background The current status of insecticide resistance in mosquitoes and the effects of insecticides on non-target insect species have raised the need for alternative control methods for malaria vectors. Predation has been suggested as one of the important regulation mechanisms for malaria vectors in long-lasting aquatic habitats, but the predation efficiency of the potential predators is largely unknown in the highlands of western Kenya. In the current study, we examined the predation efficiency of five predators on Anopheles gambiae s.s larvae in 24 hour and semi- field evaluations. Methods Predators were collected from natural habitats and starved for 12 hours prior to starting experiments. Preliminary experiments were conducted to ascertain the larval stage most predated by each predator species. When each larval instar was subjected to predation, third instar larvae were predated at the highest rate. Third instar larvae of An. gambiae were introduced into artificial habitats with and without refugia at various larval densities. The numbers of surviving larvae were counted after 24 hours in 24. In semi-field experiments, the larvae were counted daily until they were all either consumed or had developed to the pupal stage. Polymerase chain reaction was used to confirm the presence of An. gambiae DNA in predator guts. Results Experiments found that habitat type (P < 0.0001) and predator species (P < 0.0001) had a significant impact on the predation rate in the 24 hour evaluations. In semi-field experiments, predator species (P < 0.0001) and habitat type (P < 0.0001) were significant factors in both the daily survival and the overall developmental time of larvae. Pupation rates took significantly longer in habitats with refugia. An. gambiae DNA was found in at least three out of ten midguts for all predator species. Gambusia affins was the most efficient, being three times more efficient than tadpoles. Conclusion These experiments provide insight into the efficiency of specific natural predators against mosquito larvae. These naturally occurring predators may be useful in biocontrol strategies for aquatic stage An. gambiae mosquitoes. Further investigations should be done in complex natural habitats for these predators
Targeting of T/Tn Antigens with a Plant Lectin to Kill Human Leukemia Cells by Photochemotherapy
Photochemotherapy is used both for solid tumors and in extracorporeal treatment of various hematologic disorders. Nevertheless, its development in oncology remains limited, because of the low selectivity of photosensitizers (PS) towards human tumor cells. To enhance PS efficiency, we recently covalently linked a porphyrin (TrMPyP) to a plant lectin (Morniga G), known to recognize with high affinity tumor-associated T and Tn antigens. The conjugation allowed a quick uptake of PS by Tn-positive Jurkat leukemia cells and efficient PS-induced phototoxicity. The present study was performed: (i) to evaluate the targeting potential of the conjugate towards tumor and normal cells and its phototoxicity on various leukemia cells, (ii) to investigate the mechanism of conjugate-mediated cell death. The conjugate: (i) strongly increased (×1000) the PS phototoxicity towards leukemic Jurkat T cells through an O-glycan-dependent process; (ii) specifically purged tumor cells from a 1∶1 mixture of Jurkat leukemia (Tn-positive) and healthy (Tn-negative) lymphocytes, preserving the activation potential of healthy lymphocytes; (iii) was effective against various leukemic cell lines with distinct phenotypes, as well as fresh human primary acute and chronic lymphoid leukemia cells; (iv) induced mostly a caspase-independent cell death, which might be an advantage as tumor cells often resist caspase-dependent cell death. Altogether, the present observations suggest that conjugation with plant lectins can allow targeting of photosensitizers towards aberrant glycosylation of tumor cells, e.g. to purge leukemia cells from blood and to preserve the normal leukocytes in extracorporeal photochemotherapy
Oxidative stress and senescence in social insects : a significant but inconsistent link?
The life-prolonging effects of antioxidants have long entered popular
culture, but the scientific community still debates whether free radicals
and the resulting oxidative stress negatively affect longevity. Social
insects are intriguing models for analysing the relationship between oxidative
stress and senescence because life histories differ vastly between
long-lived reproductives and the genetically similar but short-lived
workers. Here, we present the results of an experiment on the accumulation
of oxidative damage to proteins, and a comparative analysis of
the expression of 20 selected genes commonly involved in managing oxidative
damage, across four species of social insects: a termite, two bees
and an ant. Although the source of analysed tissue varied across the
four species, our results suggest that oxidative stress is a significant
factor in senescence and that its manifestation and antioxidant defenses
differ among species, making it difficult to find general patterns. More
detailed and controlled investigations on why responses to oxidative
stress may differ across social species may lead to a better understanding
of the relations between oxidative stress, antioxidants, social life history
and senescence.
This article is part of the theme issue ‘Ageing and sociality: why, when
and how does sociality change ageing patterns?’The German Research Foundation and the Technische Universität Dresden Zukunftskonzept funded from the Excellence Initiative by the German Federal and State Governments.http://rstb.royalsocietypublishing.orgam2022Zoology and Entomolog
- …