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Physical and land-cover variables influence ant functional 
groups and species diversity along elevational gradients 

Abel Bernadou · Régis Céréghino · 
Hugues Barcet · Maud Combe · 
Xavier Espadaler · Vincent Fourcassié 

Abstract Of particular importance in shaping spe
cies assemblages is the spatial heterogeneity of the 
environment. The aim of our study was to investigate 
the influence of spatial heterogeneity and environ
mental complexity on the distribution of ant functional 
groups and species diversity along altitudinal gradi
ents in a temperate ecosystem (Pyrenees Mountains). 
During three summers, we sampled 20 sites distributed 
across two Pyrenean valleys ranging in altitude from 
1,009 to 2,339 rn by using pitfall traps and band 
collection. The environment around each sampling 
points was characterized by using both physical and 
land-cover variables. We then used a self-organizing 
map algorithm (SOM, neural network) to detect and 
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characterize the relationship between the spatial 
distribution of ant functional groups, species diversity, 
and the variables measured. The use of SOM allowed 
us to reduce the apparent complexity of the environ
ment to five clusters that highlighted two main 
gradients: an altitudinal gradient and a gradient of 
environmental closure. The composition of ant func
tional groups and species diversity changed along both 
of these gradients and was differently affected by 
environmental variables. The SOM also allowed us to 
validate the contours of most ant functional groups by 
highlighting the response of these groups to the 
environmental and land-cover variables. 
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Introduction 

One of the main concerns in community ecology is to 
identify the environmental factors ( either biotic or 
abiotic) that shape species assemblages (Rosenzweig 
1995). Of particular importance in this respect is the 
heterogeneity created by the variation of these factors. 
According to the hypothesis of habitat heterogeneity 
suggested by MacArthur and MacArthur (1961), 
species richness should increase with increasing 
structural complexity of the environment. This rela
tionship has indeed been found in many taxa, e.g. 
arthropods, birds, mammals, amphibians or reptiles 
(see Tews et al. 2004 for a review). Environmental 
heterogeneity can significantly influence not only 
species richness but also their relative distribution. 
The distribution of ants for example is significantly 
affected by the spatial heterogeneity generated by fire 
(Parr and Andersen 2008), anthropogenic disturbances 
(Kalif et al. 2001 ), habitat fragmentation (Vasconcelos 
et al. 2006), or grazing (Bestelmeyer and Wiens 1996). 
Natural gradients (e.g. altitude, latitude) are also a 
major source of spatial heterogeneity that can influ
ence the structure of species assemblages. Mountain
ous areas in particular are characterized by rapid 
changes in climate, soil, or vegetation, over relatively 
short distances (Korner 2007). They thus offer 
considerable landscape heterogeneity on a condensed 
area and are ideal for exploring the ecological 
mechanisms underlying spatial patterns in species 
richness and distribution. 

In this study, we investigated the influence of 
spatial heterogeneity and environmental complexity 
along altitudinal gradients on the distribution of ant 
functional groups and species diversity across two 
Pyrenean valleys: one located in Andorra, on the 
Southern side of the Pyrenees (the Madriu-Perafita
Claror valley), and another located in France, on the 
Northern side of the Pyrenees (the Pique valley). The 
categorization of organisms into functional groups has 
been widely used in the study of animal communities 
(birds: Cody 1985; reptiles: Piank:a 1986). Species 
classification by functional groups reduces the appar
ent complexity of animal communities (Andersen 
1997a) and thus facilitates the understanding of the 
general principles that govern the functioning of 
ecosystems. Although the classification in functional 
groups has been used to study the ant fauna 
of Australia (Andersen 1995; Hoffmann and 

Andersen 2003), South (Bestelmeyer and Wiens 
1996) and North America (Andersen 1997a; Stephens 
and Wagner 2006), and Asia (Pfeiffer et al. 2003), this 
method has been rarely used to study the ant fauna of 
Europe (but see G6mez et al. 2003). 

Environmental heterogeneity may act at multiple 
scales on animais, both spatially and temporally 
(Wiens 1989; Levin 1992). All ofthese scales however 
may not be relevant to understand how an animal 
interacts with its environment and the choice of the 
spatial scale at which to study environmental hetero
geneity should be consistent with its perception of the 
environment. This requires the selection of appropri
ate descriptive variables (Turner et al. 2001 ). Physical, 
chemical and biological data, however, are often 
difficult to analyze in an integrated way because they 
are complex, noisy, and vary and covary in a non
linear way (Lek and Guégan 2000). One solution is to 
use modeling techniques, such as artificial neural 
networks, that are able to take into account the 
complex structure of multi-dimensional datasets 
(Chon 2011). For example, the Self-Organizing Map 
algorithm (SOM, unsupervised neural network, Ko
honen 2001) is a powerful and well-suited tool to 
detect patterns in animal communities in relation to 
environmental variables (Lek and Guégan 2000). 
SOMs have been used in ecology to study mostly 
aquatic insect or fish communities (e.g. Compin and 
Céréghino 2007; ants: Groc et al. 2007; Delabie et al. 
2009; Céréghino et al. 2010). In this study we used 
SOM to fulfill two main objectives: (1) to describe 
landscape spatial patterns along altitudinal gradients 
and to explore whether the apparent complexity of 
mountain environments can be reduced to a few 
simple elements and (2) to address the question ofhow 
ant functional groups and pattern of species diversity 
respond to the changes in land-cover and physical 
variables along these gradients. 

Methods 

Study area and sampling sites 

Our study area was located in the Pyrenees, a 
mountain range located in south-west Europe and that 
is shared between Spain, France and the Principality of 
Andorra. Because of their orientation and geographie 
location, these mountains present considerable 



climatic contrasts. The northem and western sides of 
the Pyrenees have an oceanic climate, with rainfall 
throughout the year, mild winters and cool summers. 
The southem side in contrast has a more continental 
climate, characterized by high solar radiation, torren
tial rains at equinoxes, large temperature variations, 
and very cold winters and dry summers. 

Two valleys were sampled in this study: the 
Madriu-Perafita-Claror, in Andorra, and the Pique 
valley, in France. The Madriu-Perafita-Claror valley is 
a glacial valley located in the southeast part of 
Andorra that covers an area of 4,247 ha. The valley 
is oriented along an east-west axis and extends along 
an altitudinal gradient ranging from 1,055 to 2,905 m. 
The valley is well preserved: the production of timber 
has ceased in the 1950s' and since the 1980s' there has 
been almost no human intervention. Because of its 
state of preservation, the Madriu-Perafita-Claror val
ley has been registered in 2004 as W orld Heritage by 
UNESCO for its culturallandscape (www.unesco.org, 
see Madriu-Perafita-Claror valley). The Pique valley 
is a glacial valley predominantly oriented along a 
north-south axis, extending along an altitudinal gra
dient ranging from 650 to 3,116 m. lt is dominated by 
peak:s over 3,000 rn in altitude that lie on the border 
between France and Spain. This valley is part of the 
Natura 2,000 sites (www.natura2000.fr/) ; it covers an 
area of 8,251 ha divided into two main valleys (the 
Pique valley and the Lys valley). 

We sampled ants at 20 sites (9 sites in the Madriu 
valley and 11 sites in the Pique valley) in July-August 
2005 to 2007. To select the sampling sites, three main 
factors were considered: elevation, exposure, and type 
of vegetation cover. We sampled along an altitudinal 
gradient ranging from 1,300 to 2,300 rn for the Madriu 
valley, and from 1,000 to 2,300 rn for the Pique valley. 
Sampling could not be achieved over a larger altitu
dinal gradient, because of high anthropogenic pres
sures below 1,300 rn in the Madriu valley, and below 
1,000 rn in the Pique valley. Locations higher than 
2,300 rn were not sampled because ant species 
richness beyond this altitude is known to be very 
low (Glaser 2006). The two valleys were thus sampled 
on 62.5 and 61.4 %of their altitudinal range, for the 
Madriu and Pique valleys respectively. The different 
categories of vegetation covers considered for the 
selection of the sampling sites were: forest, meadow, 
seree and bushes. Table S 1 gives the main character
istics of the sampling sites for the two valleys. 

Sampling methods and species identification 

At each of the 20 sites, we used a variation of the ALL 
protocol (Agosti et al. 2000) to sample the ants. A 
190 rn long line transect was traced and sampling 
points were placed on this line every 10 rn (mak:ing a 
total of 20 sampling points per site, yielding a total400 
sampling points for the two valleys). The position of 
the sampling points were recorded by means of a GPS 
(Garmin® eTrex®) and subsequently loaded into 
DN A-GIS, a free geographie information system 
(www .diva-gis.org). 

Two collection methods were used to sample the 
ants at each sampling point: pitfall traps and hand 
collection. The pitfall traps consisted of plastic cups 
(diameter: 35 mm, height: 70 mm), filled to one-third 
of their height with ethylene glycol. The cups were 
buried so that their upper lip was flushed with the 
surface of the substrate. The pitfall traps were therefore 
set in action immediately and were left in place for 
5-8 da ys (Table S 1 ). The pitfalls could not be operated 
for the same length of time because access to sorne of 
the transects was difficult and was sometimes pre
vented by adverse meteorological conditions. Pitfall 
trapping was supplemented by hand collecting around 
each sampling point at the moment the pitfalls were 
removed. Hand collecting consisted of one persan (the 
same persan for ali transects) picking up ali visible ants 
within a 2 rn radius around each trap during a 
maximum of 3 min. Ants were searched on the ground 
and in the vegetation; potential nesting sites were also 
inspected ( dead wood, undemeath stones/bark). The 
combination of pitfall and hand collecting sampling 
techniques is known to perform well in temperate 
regions (Groc et al. 2007). Winkler extractors were not 
used because the leaf litter is generally shallow 
(because of heavy rainfall, the presence of rocks, and 
high slope inclination) or relatively poor (particularly 
in coniferous forests) in mountainous environments. 
Ali ants collected at each sampling point were placed in 
plastic vials filled with 90 % ethanol. Once in the 
laboratory, ants were identified to the species level 
using available keys (Seifert 2007). 

Because ants are social insects, a single sample may 
contain a high abundance of a rare species. Our 
analyses are therefore based on the species occurrence 
in the samples rather than on the number of individ
uals. A sampling point thus corresponds to the 
presence/absence of various species collected at a 



sampling site by a pitfall trap or by hand collection 
around the pitfall or by both sampling methods. 
Consequently, the theoretical maximum of a species 
occurrence in a transect is 20. 

Environmental variables and habitat 
characterization 

The 20 sites sampled and the micro-environment 
around each pitfall were characterized by using four 
physical and eight land-caver variables. These 12 
variables were chosen because they have been shawn 
to be consistently correlated with ant species richness 
in previous studies (for physical variables see for 
example: Kaspari et al. 2004; Sanders et al. 2007; 
Dunn et al. 2009a). The physical variables considered 
were: annual mean temperature (in °C), annual 
precipitation (in mm), elevation a.s.l (in rn) and slope. 
Annual mean temperature and annual precipitation 
were obtained from two GIS data layers (30 arc
seconds) of the WorldClim 1.4 database (Hijmans 
et al. 2005), whereas elevation was recorded directly 
in the field by a GPS. WorldClim computes temper
ature as a function of elevation, which means that ali 
points of a transect where characterized by the same 
temperature value in our study. The slope was 
characterized locally around each pitfall by the same 
persan throughout the whole study using the following 
scale: 0 (null to gentle slope ), 1 (moderate slope ), 
2 (strong slope). To describe the area surrounding the 
pitfalls, digital photographs centered on each pitfall 
were taken. Then, on each photograph, we considered 
an area of 1 m2 centered on the pitfall and used an 
image analysis software to delineate the outline of the 
following land-caver variables within this area: shrub, 
bare rock/pebbles, dead wood/stump, litter, grass and 
bare soil. The percentage of area covered by each of 
these elements was then determined. In addition, we 
also noted the presence/absence of either a hardwood 
or coniferous canopy above each pitfall. 

Ant functional groups 

AU ant species collected in the Madriu and Pique valle ys 
were classified into five functional groups (see Table S2) 
according to the categorization proposed by Roig and 
Espadaler (2010). This latter is an adaptation for the 
lberian Peninsula and Balearic Islands of the classifica
tion used by Andersen (1995, 1997a, 2000) for 

Australian and North American ants and on that used 
by Bestelmeyer and Wiens (1996) for South American 
ants. Given that sorne genera ( e.g. Formica andLasius in 
this study) are heterogeneous in terms of their ecology 
and behaviour, different functional groups sometimes 
share species of the same genus. The five following 
functional groups were distinguished: 

Opportunists (0) these are, in general, unspecial
ized species, whose distributions are strongly 
influenced by competition with other ants. Accord
ing to Andersen (2000), these species often span a 
large diversity of habitats. They predominate in 
areas where stress or disturbance limit ant diver
sity and biomass and thus in which behavioural 
dominance is low. In our study, this group is 
represented by species of the genus Formica and 
by species like Tapinoma erraticum and Tetramo
rium impurum. T. erraticum was not classified as a 
Dominant Dolichoderinae because its societies are 
small (Seifert 2007) with a much reduced worker 
number compared, e.g., to the polydomous species 
T. nigerrimum. 

- Social Parasites (SP): this group gathers species 
that are either temporary (e.g. Lasius mixtus) or 
permanent (e.g. Strongylognatus testaceus) social 
parasites. 

- Coarse Woody Debris Specialist (CWDS) this 
group is represented by two species: Camponotus 
herculeanus and C. ligniperda. These species nest 
in stumps or tree trunks. 

- Cold Climate Specialists/Shadow Habitats ( CCS/ 
SW): these species have their distributions cen
tered on cold climate areas (Andersen 2000). They 
are generally characteristic of habitats where the 
abundance of dominant dolichoderines is low 
(Andersen 2000). This group is mainly represented 
in the Madriu and Pique valleys by the genera 
Formica, Lasius and Myrmica. The ants of the 
genus Myrmica were classified as CCS/SW rather 
than Opportunists because this genus is mainly 
present within mountainous, humid and grassy 
environments (Radchenko and Elmes 2010). 

- Cryptics ( C) the se species are small to tin y species. 
This group is predominantly represented by 
myrmicines and ponerines that nest and forage 
within soil, litter and dead branches (Andersen 
2000). These ants are mainly present in forested 
habitats. In our study, this group is represented by 



the two genera Leptothorax and Temnothorax and 
by one species of the Lasius genus: L. flavus. 
Leptothorax and Temnothorax species were 
included in the Cryptics functional group because 
they have cryptic behaviour in the sense that they 
forage singly, move slowly and "have little 
interaction with other epigaeic ants" (Andersen 
1995). 

Data analysis 

To estimate total ant species richness at the valley and 
transect levels and to evaluate the completeness of our 
samples, Chao2, a non parametric richness estimator, 
was calculated with the program EstimateS 7.5.2 (100 
replicates) (Colwe11 2005). 

We used the SOM Toolbox (version 2) for Matlab® 
developed by the Laboratory of Information and 
Computer Science at the Helsinki University of 
Technology (http:/ /www .cis.hut.fi/projects/somtool 
box/, see Vesanto et al. (1999) for practical instruc
tions). The SOM is an unsupervised learning procedure 
which transforms a set of multidimensional data into a 
two dimensional map subject to a topological con
straint (see Kohonen 2001 for details). The data are 
projected onto a rectangular grid composed of hexag
onal cells, forming a map (Giraudel and Lek 2001 ). The 
SOM plots the similarities of the data by grouping 
similar data items together as follows: 

(i) Virtual samples (visualized here as hexagonal 
cells) are initialized with random samples taken 
from the input data set. 

(ii) The virtual samples are updated in an iterative 
way: (1) a sample unit is randomly chosen as 
an input unit, (2) the Euclidean distance 
between this sample unit and every virtual 
sample is computed, (3) the virtual sample 
closest to the input unit is selected and called 
'best matching unit' (BMU), and ( 4) the BMU 
and its neighbours are moved a bit towards the 
input unit. 

The training is separated into two parts: 

(i) Ordering phase (the 3,000 first steps): when this 
phase takes place, the samples are highly mod
ified in the wide neighbourhood of the BMU. 

(ii) Tuning phase (7,000 steps): during this phase, 
only the virtual samples adjacent to the BMU 
are lightly modified. At the end of the training, 
the BMU is determined for each sample, and 
each sample is set in the corresponding hexagon 
of the SOM map. Neighbouring samples on the 
grid are expected to represent adjacent clusters 
of samples. Consequently, sampling points 
appearing distant in the modelling space 
( according to physical and land-cover variables) 
represent expected differences among sampling 
points in real environmental characteristics. 

The self-organizing map for this study consists of 
two layers of neurons connected by weights: an input 
layer and an output layer. The input layer was 
composed of 12 neurons (one per variable) connected 
to the 400 sampling points. The output layer was 
composed of 98 neurons (see below) visualized as 
hexagonal cells organized on an array of 14 rows by 7 
columns (Fig. l a). The number of output neurons 
(map size) is important to detect the deviation of the 
data. If the map size is too small, it might not exp lain 
sorne important differences that should be detected 
(Compin and Céréghino 2007). Conversely, if the map 
size is too big, the differences are too small. We 
followed the procedure described in Park et al. (2003) 
and Céréghino and Park (2009): the network was 
trained with different map sizes (4-200 neurons) and 
we chose the optimum map size based on local 
minimum values for quantization and topographie 
errors. Quantization error is the average distance 
between each data vector and its BMU and, thus, 
measures map resolution. Topographie error repre
sents the proportion of ali data vectors for which 1 st 
and 2nd BMUs are not adjacent, and is used for the 
measurement of topology preservation The number of 
98 output neurons retained for this study fitted well the 
heuristic rule suggested by Vesanto et al. (2000) who 
reported that the optimal number of map units is close 
to 5-Jn, where n is the number of samples. For each 
sampling point, we made a list of the different species 
collected and determined the values of the environ
mental variables characterizing the sampling point. To 
highlight the relationships between the different ant 
functional groups and the environmental variables, the 
number of species occurrences of each functional 
group was introduced into the SOM previously trained 



Fig. 1 Distribution of the 
sampling points on the self
organizing map (SOM). 
a The sampling points are 
distributed according to four 
physical variables (altitude, 
slope, mean annual 
temperature and mean 
precipitation) and eight 
land-cover variables 
variables (presence of a 
hardwood or coniferous 
canopy, percent area 
covered by shrub, bare rock/ 
pebbles, dead wood/stump, 
litter, grass and bare soil in a 
1 m2 area around each 
pitfall). Altitude, mean 
annual temperature and 
mean precipitation were 
obtained by using a GIS 
software while slope and the 
eight environmental 
variables were estimated 
directly in the field or by the 
analysis of digital 
photographs centered on 
each sampling points. The 
codes used to designate the 
sampling points on the SOM 
refer to the valley (M for 
Madriu, P for Pique), the 
transect number within the 
valley, and the location of 
the sampling points within 
the transect (e.g.: MT2P20, 
Madriu valley, Transect 2, 
sampling points 20). 
Neighboring sampling 
points on the self-organizing 
map share similar 
environmental 
characteristics. b The SOM 
units were classified into 
five clusters (A, B, C, D and 
E). The boundaries of the 
five clusters (A, B, C, D and 
E) were obtained by 
applying Ward's algorithm 
to the weights of the 
variables in the SOM 
hexagons. The smallest 
branches with numbers in 
the dendrogram correspond 
to the SOM neurons 
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with the four physical and the eight land cover 
variables that characterize each sampling point. Dur
ing the training of the map, we used a mask to give a 
null weight to the five functional groups, whereas 
physical and land-cover variables were given a weight 
of 1. Therefore, the search for the BMU was based on 
the 4 physical and 8land-cover variables only. Setting 
the mask value to zero for a given component (here for 
each of the five functional groups) removes the effect 
of that component on the map organization (Vesanto 
et al. 2000). The values and distributions of the 
functional groups were then visualized on the SOM 
previously trained with physical and land-cover vari
ables only and formed by the 98 hexagonal cells. 

In a last step, Ward's algorithm was used to identify 
the boundaries between each cluster on the Kohonen 
map (Fig. 1 b ). The distributions of the number of 
species occurrences in each ant functional groups in the 
different clusters were compared using the x2 test for 
independent samples (Siegel and Castellan 1988). To 
further analyze the distribution of functional groups 
within each cluster, an analysis of residuals was 
performed (Siegel and Castellan 1988). This analysis 
tests the contribution of each functional group to each 
cluster. Moreover, it reveals whether a functional group 
is positively or negatively associated to a given cluster. 

We used a generalized linear mixed model 
(GLMM) with a Poisson error distribution to examine 
the variation in ant species richness per sampling point 
among the SOM clusters. To account for spatial 
autocorrelation among sampling points located in the 
same transects and in the same valley, the variable 
transect was nested within the variable valley and was 
entered as a random variable in the model. To assess 
the overall effect of the SOM clusters on species 
diversity we fitted a first model in which the SOM 
cluster variable was entered as a fixed effect categor
ical factor and the transect variable (nested within 
valley) was entered as a random effect categorical 
factor. We then fitted a second model with no fixed 
effects and compared the two models with a likelihood 
ratio test (Zuur et al. 2009). The different SOM 
clusters were then regrouped by removing non
significant factor levels in a stepwise a posteriori 
procedure (Crawley 2007). The models were fitted 
with the statistical software R 2.11.0 (R Development 
Core Team 2011) and the R-package lme4 (linear 
mixed-effects models using S4 classes, Bates et al. 
2011) using the function glmer. 

Results 

Classification of sampling sites 

Mter training the Kohonen map with the four physical 
variables and the eight land-cover variables, five 
clusters of sampling sites obtained from the SOM 
output were identified (Fig. l a, b). 

The SOM allowed us to identify two main gradients 
(Fig. 2 and Fig. S 1 ): a fust gradient extending from the 
lower right to the upper left corner of the map ( clusters 
D and E vs. cluster A, B and C), which corresponds to 
an altitudinal gradient ranging from low to high 
altitudes, and a second gradient, extending from the 
bottom to the top of the map (clusters C, D andE vs. 
cluster A and B), which corresponds to a gradient of 
environmental closure, ranging from closed to open 
areas. 

Cluster B corresponds to sampling sites of medium 
elevations located in open areas, e.g. grassland areas 
(Fig. 2). Cluster A is equivalent to cluster B but for 
high elevation. It includes sampling sites typical of 
mountain environments, e.g. screes of high altitudes 
located on steep slopes. A large proportion of the 
sampling sites of cluster A is dominated by bare rocks 
and shrubs (Fig. 2). Clusters C and E correspond to 
sampling sites in forest areas: cluster E to low altitude 
forests dominated by hardwood, with a high ahun
dance of litter and dead wood, and cluster C to high 
altitude forests in which conifers are predominant. 
Note that for cluster E the sampling sites with high 
slopes are also characterized by bare soil. Cluster D 
corresponds to a transition area between hardwood 
forests and grasslands (Fig. 2). 

Distribution of ant functional groups and species 
diversity 

In total, 42 ant species were found in the two valleys. 
The number of species collected at each transect 
varied between 25 at 1,351 rn and 2 at 2,339 rn, and 
between 14 at 1,009 rn and 4 at 2,299 rn, for the 
Madriu and Pique valley respectively. The Chao2 
estima tor indicated that between 66 and 100 % 
(mean± SD = 93.48 ± 10.89) of the expected max
imum number of species were collected for the 9 
transects in the Madriu valley, and between 63 and 
100 % (mean ± SD = 90.74 ± 12.29) for the 11 
transects in the Pique valley using pitfall traps and 
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dominant functional group m most clusters (range: 

Clusters 

Litter (% 1 Dead wood 1 stump (% 1 
7.4 

3.71 

0 

Shrub(~·l Sare rock 1 pebbles (~. ) 

47.5 

24.2 

0.935 

(clusteD A. B md C) altitudes, ami a gradient of enviroJJmcatal 
closure. rangiDg from closed (cl.usters C, D aad E) to open 
(clustcrs A and B) areas. See also Fig. Sl for the mean amrual 
temperature IUid mean precipitation variables 

44-58 %, mean: 56 %, Fig. 4a). The Opportunists is 
the second largest group (range: 23-47 %, mean: 
30 %), followed. by the Cryptics (range: 8-19 %, 
mean: 11 %), the Coarse Woody Debris Specialists 
(range: 1-15 %, mean: 5 %) and the Social Parasites 
(range: 0-3 %, mean: 1 %) (Figs. 3, 4a). 

The distribution of species occurrences m each 
functional group was not homogeneous across the :five 
clusters (j- = 96.16, df = 16, p < 0.001). The 
Coarse Woody Debris Specialists functional group 
was signi:ficantly and positively associated with cluster 
C (residuals = 6.2, Figs. 3, 4b) and negatively asso
ciated with cluster B {residual = -2.4, Figs. 3, 4b) 
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and toalesse.rextenttocluster A(residual = -1.8, not 
significant. Figs. 3. 4b). This functional group is thus 
characteristic of woodland areas and is negatively 
associated with open areas. The Cold Climate Spe
cialists/Shadow Habitat and Opporbmist functional 
groups do not show any clear distribution pattern. 
They are abundant in ali clusters (Fig. 4a). The Social 
Parasites are signifi.cantly and positively associated 
with cluster B (œsiduals = 3.8, Fig. 4b). The Cryptic 
group was significantly pœsent in cluster B (residu
ais= 2.3. F1g. 4b) and is thus associated with the 
presence of litter and han\wood canopy. 

The distribution of ant species ri.chness per sam
pling point differed signiftcantly among the five 
clusters (GLMM, f = 94.18, df= 4, p < 0.001). 
Cluster B bad the lowest ant species richness (mean ant 
species richness per sampling point ±Cio.9.s: 
0.74 ± 0.27) while clusters B (3.77 ± 0.38) bad the 
highest one (Fig. 5). Cluster D was only marginally 
significantly different from clusters A and C (GLMM, 
z value = 1.93, p = 0.052). 

Dlscussion 

ln this study we used a Self-O.rganizing Map algorithm 
to categorize 400 sampling points on the basia of 12 
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for ail clustas groupcd togedler. Significant differences in ant 
speçi.cs ric:Jmess between clusteD wme tested with a genaalized 
linear mixed model (GLMM) with a Poisson eaor distribution. 
Different lettcrll above the error btJn indicate sigomcant 
differeDœs in mt species riclmess at P < 0.05 

environmental variables characterizing the physical 
environment and the type of land-cover around each 
sampling point. The SOM algorithm :redu.ced the 
complexity of the database to fi.ve clusters of sampling 
points corresponding to high and low elevation 
grassland areas, hardwood and coniferous forests, 
and a transition area between hardwood forests and 
grasslands. These clusters highligb.t two main gradi
ents: an altitudinal gradient that mimics to a certain 
extent the altitudinal zonation of vegetation found in 
the Pyrenees (Ninot et al. 2007) and a gradient of 
environmental closure. We then categorized the 
species found at the sampling points into nve 
functional groups and used the SOM map generated 
by the algmithm to stud.y the distribution of these 
groups in the environments sampled. Using this 
method, we were able to validate the contours of most 
functional groups by positively or negatively corre
lating their disttibution with the environmental vari
ables measmed. The disttibution of ant functional 
groups changed along environmental gradients and 
was differently affec1ed by environmental variables. 
Finally. we examineA the disttibution of ant specles 
richness across the ôve clusters of sampling points 
identifi.ed by the SOM algorithm to fi.nd out the 
environmental characteristics associ.ated with low or 
high ant species diversity. Three of the fi.ve functional 
groups (Coarse Woody Debris Specialists, Sociol 
Parasites tmd the Cryptic) showed a clear pattern of 
association with particular features of the environment 
such as the presence of litter and canopy. 1'hese tbree 
groups however represented only 31 % of the 42 
species collected whereas the disttibution pattern of 
the two other functional groups ( Cold Climate 
Specialist/Shadow Habitat and OpportrmistJJ) that 
represented 69 % of the total number of specles 
collected was much less clear. Our results show 
therefore that the disttibution of the ôve functional 
groups we de1ined change along environm.ental gra
dients. and that they are thus differently affected by 
environmental variables. Assuming tbat species are 
more likely to reach neighboring areas than areas far 
apart and that neighboring sampling points tend to 
exhibit similar physical features, small-scale autocor
relatiom of ant assemblages were suggested from the 
SOM outputs (Figs. 1, 2, 3). However. almost ali ant 
functional groups (four out of fi.ve) were present 
within ali SOM clusters which shows that spatial 
autoco.rrelation alone cannot explain the SOM oulputs. 



Indeed, if spatial autocorrelation were the only factor 
explaining the relationship between sampling points 
then each of the SOM elus ter would correspond to an 
ant functional group. 

Why does the SOM analysis show such a discrep
ancy among functional groups in their pattern of 
association with environmental variables and why do 
in particular both the Cold Climate SpecialistJShadow 
Habitat and Opportunists functional groups appear to 
be so widely distributed in our sampling area? Two 
explanations could be provided. The fust explanation 
could be that this result reflects true particular 
biological traits of the species belonging to these 
groups. According to Andersen (1995, 1997a, 2000) 
the distribution of the Cold Climate Specialists/ 
Shadow Habitat species is centred on cool-temperate 
regions. In the two valleys we sampled, this group was 
represented by three genera: Formica, Lasius and 
Myrmica. Most of the species of these genera are 
holarctic and are characteristic of the cold regions of 
the northern hemisphere (Bernard 1968). Their suc
cess in these regions is mainly due to specifie 
behavioural and/or physiological adaptive traits that 
allow them to resist to low temperatures (Heinze 1992; 
Maysov and Kipyatkov 2009). Since the whole area 
we sampled was located in a temperate mountainous 
region it should therefore come as no surprise that the 
Cold Climate Specialists/Shadow Habitat functional 
group was not found to be associated with any 
particular specifie environmental variable. As for the 
species belonging to the Opportunistic functional 
group, we found that they occupy a wide range of 
habitat but were particularly present in grassland areas 
of high altitudes, a relatively stressful environment for 
ants, both because of the low temperatures, charac
teristic of high altitudes, and of the scarcity of food 
(Andersen 2000). 

A second and alternative explanation to the dis
crepancy found among functional groups in their 
pattern of association with environmental variables 
could be linked to the criteria used to define the 
functional groups. The criteria used to define the Cold 
Climate SpecialistJShadow Habitat and Opportunists 
functional groups could not be relevant to obtain clear 
patterns with the SOM analysis. As pointed out by 
Andersen (1997b) the definition of functional groups 
is scale-dependent and one should thus be cautious in 
using them in community ecolo gy studies. As a case in 
point Andersen (1997b) gives the example of the 

mound-building species of the genus Formica. At a 
local scale, these species are behaviorally dominant 
throughout the Holarctic and they could thus be 
described as belonging to the dominant species 
functional group in local ant fauna (Andersen 1997b; 
Savolainen and VepsaHi.inen 1988). However, this 
dominance is limited to cool-temperate regions and at 
a global scale they would rather be considered as 
belonging to the group of cold-climate specialists. The 
importance of competition and dominance in ant 
community structure is thus scale dependent. The 
categorization in functional groups used in our study 
corresponds to that proposed by Roig and Espadaler 
(2010) to describe the ant fauna of the lberian 
Peninsula and Balearic Islands. Applied at the local 
scale of our study area, this categorization may not be 
discriminative enough (Andersen 1997b) and could 
conceal the response of sorne ant species to particular 
ecological variables. A solution could have been found 
in subdividing sorne of the functional groups we used 
(Bestelmeyer and Wiens 1996; Andersen 1997b). This 
could have increased the discriminative power of our 
analysis and as a consequence, clearer successional 
patterns in relation to environmental variables could 
have been revealed. 

The ant species belonging to the Coarse Woody 
Debris Specialists and Cryptic functional groups were 
significantly and positively associated with woodland 
areas and negatively associated with open areas. The 
strong response of these two groups to the presence of 
a canopy can most likely be explained by their nesting 
habit. As a caveat however one should keep in mind 
that SOM is a correlative analysis and thus does not 
convey information on the mechanisms generating the 
distributions observed. For example, we do not know 
if the presence or absence of a species in a given 
environment results from an effective choice of a 
habitat by newly mated queens during colony found
ing, from an impossibility to colonize a particular 
environment, or whether it results from competition 
mechanisms. For the Social Parasites, as for the 
Coarse Woody Debris Specialists and Cryptic groups, 
these species show a clear and localized pattern of 
distribution on the SOM. However, this result has to be 
interpreted cautiously. This functional group probably 
does not respond to physical and land-caver variables 
perse, but rather to the presence or absence of its hasts. 

The mean number of species in the five clusters we 
identified ranged from O. 7 to 3. 7. Clusters B and D have 



a higher species richness compared to clusters A and C 
which have also the highest mean altitudes. The 
decrease in ant species richness with increasing 
altitude has been reported in other studies ( e.g. Sanders 
et al. 2007, 2010; Lessard et al. 2007) and many 
hypotheses have been put forward to explain this 
pattern (see Dunn et al. 2009b ). Ants do not respond to 
elevation per se; elevation is only a surrogate for a 
variety of factors that shape diversity gradients (Korner 
2007; Dunn et al. 2009b). Nevertheless we introduced 
this environmental variable to examine how it is linked 
to other habitat features (e.g. litter, shrubs, etc.). 
Altitude at both of our field sites was correlated with 
steep slopes and bare rock areas, two environmental 
features that could negatively influence local ant 
species richness by limiting potential nest sites. 

A case point in the results is cluster E. Although it is 
characterized by a high structural complexity and a 
low altitude it had the lowest species richness of ali 
clusters. Habitat complexity is known to be an 
important factor driving species richness and commu
nity composition in ants (Lassau and Hochuli 2004).1t 
has generally been found that species richness corre
lates positively with the complexity of the environ
ment (Andersen 1986; McCoy and Bell 1991). Our 
results however do not seem to fit with this general 
observation. Clusters with greater ant diversity in our 
study indeed were simple from a structural point of 
view (see cluster B corresponding mainly to grassland 
areas). A similar result has been found by Lassau and 
Hochuli (2004) and Lassau et al. (2005) in their study 
of Australian ant communities. The two explanations 
provided by these authors to account for this result can 
also hold for our study. The first explanation is related 
to the locomotory behaviour of ants. The movements 
of ants are known to be more efficient and less 
constrained in simple than in complex environments 
(Kaspari and Weiser 1999). In simple environments, 
ants can move quickly, easily recroît nestmates, and 
defend/monopolize food sources efficiently against 
competitors and colonies can therefore develop more 
quickly. The second explanation is related to temper
ature. Sites with a dense canopy cover are likely to be 
cooler than sites exposed to direct sunlight. Since ants 
are thermophilic animais, a reduction in ground 
temperature could therefore reduce ant foraging 
activity and thus slow down or impede the develop
ment of ant colonies (Brown 1973; Cerda et al. 1998; 
Lessard et al. 2009). 

Along with cluster B, Cluster D was also one of the 
clusters characterized by a relatively high species 
diversity. This is probably explained by the fact that it 
corresponds to transitional areas between hardwood 
forests and grassland. Ecotones are indeed known to 
have a positive effect on species richness (Risser 1995). 
An explanation for this is that an ecotone not only has its 
own characteristics (composition and structure) but also 
share the characteristics ofboth adjacent habitats (Risser 
1995). Previous studies on "edge effect" howeverhave 
led to conflicting results ( e.g. in insects: Dauber and 
W olters 2004) and the results of the present study would 
thus need to be confirmed. 

SOM have already been applied successfully on ants 
to investigate the efficiency of sampling methods (Groc 
et al. 2007), the ecological impact of land use by 
Amerindians on ant diversity (Delabie et al. 2009), or 
the impact of ant-plant mutualism on the diversity of 
invertebrate communities (Céréghino et al. 2010). We 
show here that the use of SOM canin addition be useful 
to study the response of ant functional groups to 
environmental variables and land-cover features. This 
technique can explore large and complex datasets and 
thus can be used as an efficient tool in community 
ecology to define the characteristics of the ecological 
niche of each species (Groc et al. 2007; Céréghino et al. 
2010). By using SOM we were able in addition to point 
out the sites of greater ant biodiversity in our study area. 
Environmental variables were used to characterize the 
landscape around each sampling points. However, 
information on coverage protected areas (see Hopton 
and Mayer 2006) could also have been introduced into 
the SOM. This could help to find out if clusters with high 
species richness overlap with protected areas (Hopton 
and Mayer 2006). This illustrates another important 
asset of SOM: because it provides information on the 
relationship between species distribution and habitat 
characteristics, SOM can be particularly helpful in 
targeting the areas in which to focus conservation effort. 
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