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ON THE -CONVERGENCE OF INCREMENTAL METHODS

IN FINITE ELASTICITY (l) ‘

Michel BERNADOU™, Philippe G. CIARLET**, Jianwei HU™**

ABSTRACT : While the description and use of incfemen;al methods in finite

elasticity have received considerable attention in the engineering literature,
it seems that its numerical enalysis is an open problem. In this paper, we
prove the convergence of such methods when applied to a class of problems in

nonlinear, three dimensional, elasticity. .

RESUME : Alors que la description et 1'utilisation de méthodes incrémentales
en Elasticité finie sont trés répandues parmi les ouvrages 3 destination des
ingénieurs, il semble que 1'analyse numérique de ces méthodes est un probléme
ouvert. Damns ce travail, nous démontrons la convergence de ces méthodes
lorsqu'elles sont appliquées 3 une classe de problémes d'élasticité non

linéaire tridimensionnelle.
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I - THE BOUNDARY-VALUE PROBLEM OF NONLINEAR, THREE-DIMENSIONAL ELASTICITY

Consider an isotropic, homogeneous, elastic body subjected to body forces
in its interior, and to surface forces on a portion of its boundéry; the
v displacement being imposed on the remaining portion of the boundary. A mathe-
matical model for finding the equ;librium of such a mechanical system is a
nonlinear, boundary-value problem which we now briefly describe in a formal
way (for details, see for instance CIARLET [1983], GURTIN (19813, MARSDEN &
HUGHES [1982], WANG & TRUESDELL [1973], WASHIZU [1975]).

Let {2 be a2 bounded open and connected subset of the space R;, whose
boundary I is assumed to be sufficiently smooth' for all subsequent purposes.

We denote by y = (vi) the unit outer normal vector along T.

We consider a body which occupies the set § in the absence of applied forces,
so that  is called the reference configuration. The body is subjected to

" body forces of dead loading type, represented by a vector field f = (fi) given
over ! (as a rule, Latin indices : i,j,k{p,...; take their values in the set

. {1,2,3}) "and to surface forces, again of dead loading type, represented by a
vector field g = (gi) given over a portion Fl of I'. The fields£ and 8 Tespec-
tively measure the density per unit volume (in ) and the demsity per unit
area (along Fl) o£ both kinds of applied forces. The problem then consists

in solving the following nonlinear boundary value problem for the displacement
field y = (u;) and the (second),PioZa-KircthfT’stresstensor fileld g = (oij)
(in what follows, the repeated index convention for summation is systematically
used in conjunction with the above rule for Latin indices and the notation 3.

'stands for the usual partial derivative 5%— ; the tensor e(u) is defined in
(1.5) below) : : ’

(1.1) - 3j(oij + okjakui)v- fi in Q ,

.2 o, - gij(g(g)) in Q ,

(1'3). (qij + okjakui)vj =g on r., ‘ :

(1.4) u=90 onl .

Equations (1.1) and (1.3) represent the equilibriwn equations, expressed
in terms of the stress tensor g, in the reference configuration. Equations(1.2)
represent the constitutive equation of an elastie, homogeneoas,'isotropic,

material : At each point of the reference configuration, the stress tensor




g = (cij) is a known function
g(g(g)) = (Gij(g(g)))
of -the strain tensor

(1.5)  e@) = (e,.(w), with 2e..

(W) = 3,u, + J.u. + 3.u Jd.u- ,
1]~ 1]~ 1] J imjm

1

-at the same point. According to the Rivlin~Ericksen theorem (cf.e.g. WANG &
TRUESDELL [1973]), the function § is of the form

(1.6) g(e) = Y (OL + Y, (©¢ + Y, (0)¢°,
where the matrix C is defined by the relation
(1.7) C=1+2e |,

and the functions Ya(g)'are symmetric functions of the principal invariants
- of the matrix C. If we make the assumption that the reference eonfiguration

18 a natural state, i.e.,

(1.8)  g@=o0, '

~

then it is easily derived from (1.6) and (1.8) that, if the functions Y_(€)
. ‘ o'k

1

are differentiable at the point c=1I,

~

(1.9) g=g(e) = Mer @)L + 2p e +0(le]) ,

~

: . 9
denotes any norm in R » and A et u are two constants, known as the

where
Lamé coefficients of the constituting material of the body. These constants

will be assumed here to satisfy the inequalities

(1.10) X220 , pso ,

x

as is indeed the case for most "real-life" elastic, homogeneous, isotropic,

materials.

A constitutive equation-commonly used in practical applications corresponds

to the deletion of the higher-order terms in (1.9), i;e.; it reduces to

(1.11) -~ g = A(tr e)l + 2u e,



or equivalently, componentwise :

(1.12) o, =a.. e ,witha,, 985 5.6 + 2u8. s.
1) 1JPq Pq 13Pq 1] pPq 1p 19

~ We shall refer to a material obeying such a comstitutive equation as a

St Venant-Kirchhoff material. Let us now briefly discuss an existence result
for the boundary value problem (1.1)-(1.4), which relies on the implicit
lfunctton theorem. Another successful approach consists in minimizing the
associated energy (ln this direction, see the famous paper of BALL (19770),

but this second approach does not seem to be appropriate for our present purpo-

ses. For a more detailed discussion, see CIARLET [1982].

To fix ideas, consider the case of a St Venant-Kirchhoff material (this
is not a restfiction) and of the "pure displacement problem" (this is an
essential restrlctlon) that is, T = F . Then the bouﬁ&ary value problem

(1.1)-(1.4) reduces in this case to
(1.13) - aj(oij + ijakui) = fi in Q,

(1.14) Gij>= aiquepq(g) in Q .

(1.13) uwu=9 onTl,

or, in terms of the displacement vector only (taking into account the symmetry

. PTOPETLY ;411 = 3551k)

-

; def
(10 B ™= - 95055088 * 7 24 5pqptadgly * *kipap¥qd

1 .
T 7 % pqap maqumakul) = fi in &,
(1.17) u =0 onT.

‘ Since the Sobolev space Wl’p(Q) , Q.chB , 1s an algebra for p > 3 (see
e.g. ADAMS [1975, p. 115]), the nonlinear mapping [ defined in (I.16) maps

the space Ez’p(Q) dgf (Wz’p(Q))S-into the space LP () def (LP(Q))3, and besides
" it is (infinitely) differentiable between these two spaces, as a sum of
continuous multilinear mappings. Equations (1.16)=(1.17) then consist in

finding a function

(1.18)  u e VR ¢ {v = W'P(@ 5 vy =0onT)



such that

(1.19) - B8 =£f ,

where the mapping

(1.200 B = (B : ¥P@ ~LP@

is defined as in (1.16). In order to use.the tmplicit funetion theorem in
a neighborhood of the origin in both spaces XP(Q) and EP(Q) (since y = Q is
clearly a solution correspbnding to £ = 0), we must verify that the derivative

g'(g)-is an isomorphism between the spaces XP(Q) and'L?(Q). But the equation

. s
is precisely the system of linear elasticity :

1.22 - 3. = f in Q ,
( ) (alJpq pq( u)) ; inm .

(1.23) y=QonTl ,-
where the temsor g(u) = (eij(g)), with

def
(1.24) 2€ij(g) Biuj + Bjui .
is the so-called linearized strain tensbr. Since the operator &
B : XP(Q) - LP(Q) is clearly continuous and one-~to-ome, it remains to

verify that it is onto, i.e., we need a regularity result of the form :
(1.25)  B8'(yu ¢ LP@D=by ¢ PO ,

where u 1s the solution (known to exist by the variationmal theory in the

space (H (Q)) ) of (1.22)~(1.23). As shown by NEGAS [(1967] for p = 2 and by
GEYMONAT [1965] for 1 < p < +o , the regularity resﬁlt (1.25) holds, baéically
because the boundary condition does not change along T . It is_thé lack of
such a regularity result in the case of the genuine mized displacement-problem
1.1)=(1.4) that prevents the use of the zmpchzt function theorem in the

general case .

This type of analysis has been applied by CIARLET & DESTUYNDER [1979] to

the St Venant-Kirchhoff material along the lines indicated here ; it has also



’

been independently applied to more general constitutive equation by MARSDEN &
HUGHES [1978] and VALENT [1979], who proved the following existence result :

THEOREM 1 : Assume that the functions gij which appear in the constitutive
equation (1.28) are smooth enough at the point e = Q0 and that there exists a
eonstant | such that

~

a0.

y
(1.26) > 0 and 5E;i»(2)£i €y 2 MELEL

for all symmetric tensors E = (E ) Then fbr each number p > 3, there exist
a netghborhood 3 P of ¢ in LP(Q) and a neighborhood WP of 0 in-VP(Q) such
that, for each f e Ep, the boundary value problem

(1.27) - aj(oij +'okj8kui) = fi in Q ,

(1.28) 943 =_oij(g(g)) %n Q,
(1.29) wy=0QonT,

has ezactly ome solutiom u(f) in YP. : ‘ ' ]

2 - DESCRIPTION OF THE INCREMENTAL METHOD

Let.us now review the application of the incremental method to the
-'nonlinear boundary value pfoblem described in Sect.l, as it is commbnlf
presented in the engineering or mechanical litterature. We describe here
the so-called total Lagrangian method (as it is presented for instance in
WASHIZU [1975, Appendix I, Section 91),in the special case of a St Venant-
Kirchhoff material. For similar or related discussions, see ARGYRIS &
KLEIBER [1977], MASON [1980], PIAN [1976]

Our problem takes the form of egs. (1.13)=(1.15), which we rewrite

here for convenience :

(2.1) - 3 (o GkJaku ) = : in Q,
(2.2 .., = Q

( ) o.lJ lJPq Pq(u) in

(2.3) wu=0onrT,

with



(2.4) AS. .8+ 2u8. §. s, A20, u>0.

a.. = A6,.
- 13pq 1] pq ip Jq
We also assume that there exists a number p > 3 such that the whole segment

[0,£] belongs to the neighborhood & P given in Theorem 1.

The basic idea of the incremental method is to let the body forces vary
by "small" increments

«

(2.5)  Af = £ , N: a given "large" integer ,
from Q to the given force £, and to recursively compute approximations gn

to the exact solutions
(2.6) g % gD
corresponding to the sutcessive forces

(2.7) =00 ,1<nsN

~

(such solutions E(Qn) exist by Theorem 1), each approximation being computed
by an appropriate "linearization around the previous approxiﬁation"f In this

fashion the nonlinear problem is approximated by a sequence of linear problems.

Using definitioms (2.6), let

. n def n+l n
(2.8) AUi = Ui Ui ,

n def n+l n
(2.9) Aeij = eij(U ) eij(U )

denote the displacement increments and the corresponding strain increments,
respectively, for 0 < n < N-1 , so that the corresponding stress increments

- take the form

n+l n n
@100 L5 =T = ag5p0 ep

H

with

n def
Zij =

(2.11) ™

a.._ e
1JPq Pq

Since,- by definition,'



n+] n+1 n+l, .o+l _ _n .
(2.12) - aj(zij + zkj QU ) = £ =+ Af, in Q
n___n.
(2.13) - 3. (2 ZkJ 3.U.) . fi in Q ,

where Z?;l and sz-are related through relation (2.10), one obtains, after
subtracting eqs. (2.13) from egqs. (2.12), that the n-th displacement zncrement
AU = (AU ) satisfies the following boundary value problem (notice that, up to
this point, no approzimation has been made)

0y

3.(a.. Ae™ U+ a . e 3 UR + AU D) = bf, in Q,

(2.14 )
( ) jiirq pq ZkJ o kjpq pq ki akaq pq

(2.15)  28eD =3 AUT + 3 AUD + 5 AUPY UP + 5 0P AU + 5 AU AUR in @,
Pq P q qQ P P mqm pomqg m P mq m

(2.16) 21‘:. @™ in Q ,

J kaq Pq

(2.17) A =QonT .

We are now in a position to define an approximate problem : Considering
that the n-th displacement gn is known, and using eqs. (2.15)-(2.16) in egs.
(2.14), we obtain a nonlinear bouﬁdary value problem with respect to the
unknown vector Agn. Then the approximation siﬁply consists in deleting all
the terms which are nonlinear with respect to the ‘unknouwn Agn in the resulting
problem. In this fashion, we obtain that the n-th approximate displacement
increment Sy" should be solution of the following linear boundary value
problem, where.gn likewise.denotgs the n-th.approximate displacement vector :

.18 - 3. + n
(2.18) i @ijpq p6 a ¥ 2iipq’p maq m * %kipq kulapéuq

+»akqu3kulapumaq6 n ¥ %kipq pq(~ )3, du, ) inQ,

" (2.19) 6gn =0 on r .

This is exactly the problem obtained, in an equivalent variational form,
in WASHIZU [1975, eq. (I-9.42), p. 3931]. '

Provided the boundary value problem (2.18)-(2.19) has a unique solutlon

(thiswill be proved in Theorem 3 below), we define the (n+l)-st approxlmate

dlsplacement

(2.20) uw =g




which in turm allows us to similarly compute the (n+l)-st approximate displa-
cement increment; etc..In this fashion the inecremental method is completely
defined ; it ends with the computation of the N-th approximate displacement

gN, which will be proved later to approach the exact solution u(f) as the inte-

ger N approaches infinity.

3 - CONVERGENCE OF THE INCREMENTAL METHOD

Let us first prove a number of properties (useful for the sequel) of
the nonlinear mapping

\(3.1)‘ B YP(Q) v € DNJZ’P(Q) ; v=0on I}~ I:,p(Q)

defined (cf£. (1.16)) by

+ L

(3.2) 5. (u) = - 3, (al_]pq plq * 2 aiquapumaqum

+

1

* AipgpUedkli T 2 kaqapumaqumaku) :

with

3.3 a,. =86 + 248, 8. A20, u50.
3.3 ijpq 15%pq ~ “H%1p°jq -7 .
As'already observed, because the space Wl’p(Q) , 0 C-1R3,. is an algebra
for each number p > 3, the mapping f3 : ZP(Q) - I;p(Q) is well-defined and of

class e for such values of p.

For each integer m > O and each number p 2 1, we denote by

s

| 1/p
M0 ={JQ I |3%Pax}

a|<m
the norm of the Sobolev space_Wm’p(Q). If X and Y are two normed vector spaces,

ve let

Isom.(X;Y) = {a e L(X;Y) A-1 exists and A-l eZ£(¥;X)} ,

and for notational brevity we denote by the same syinbol [| «
spaces £(X;Y) , £(¥;X) , =_£2(X;Y) , etc... (such as in‘(3.6)—(3.7) below).
Finally, we let A/'(u) e (X;Y) , 5" (u) é.{z(X;Y), etc... denote the
successive Fréchet»derivatives at a point u ¢ X (when they exist) of a mapping
B : X~+Y.




LEMMA | . Let a number P > 3 be fized. Then there exists a number P, (p) >0
such that, for any number p such that

(§-4) p<p (@,
one has

(3:5) ¥ ¢ B=8'(M ¢ Isom (P@ ; LP@) ,

3.6 v s B @I s
p P
xeZs -1 -1
def He' @} - (5w
(3.7) L "= sup _ <+ o
P V,W € BP
, T4y P Iy - 4 DY

where
p def P .
3.8) 2 xev’ @ ; (34 PRENEN IS

Prodf : Using the fact that the mapping & is a sum of continuous linear,
bilinear, and trilinear mappings, we exactly have, for arbitrary functions
e '@ ,

~’~

WY = AW + B'@Wr+7 B WEY * 1 8" Wy .

.Expanding R (u+y) with the help of (3. 2) and using the symmetry of the
second derivative B"(u), we find that for arbitrary functions L, V,W € VP(Q),
each function B"ﬁn(v w) € LP(Q) is a sum of terms of either form (up to

multiplicative constants involving the Lame constants A,u of (3.3))
aj(apvmaqwm) or aj(aluiapvmaqwh) ,

so that, using again the algebficity of the Sobolev space WI’P(Q) for p > 3,

we find that there exists a constant C such that

12" @ @wl, | o= cas sl 5,02l 0l

for all u,v,w lgz’p(ﬂ). Therefore,

L

12" W @wl, |

3

1]

18" Wl = sc(1 o+ HE"z,p,sa’

”ZI 2,p,§2”3"2,p,9

2
a3 g

?

and the function




M: p20-nMp) 9 sup 2" wll
lsll, , g <o

is thus wgll-defined and non-decreasing on [0, +®).. Besides;
bell, oo selB @ - 2' @l s oo
by the mean-value theorem. Since (cf. Sect.ll)
B'(Q) € Isom(¥P(Q ; LP() ,
we deduce from the identity
- R'W = B'(Q {1 + {Q'(Q)}-l(é'(x) < Q'(Q))}.,
that, if (cf. (3.4))

ﬂvﬂz,p,QSO with OM(D) < Y;d and Yo = ”{QI(Q)}’]” ,

then- the mapping B'(v) : ZP(Q) - LP(Q) is an isomorphism, and

.Y
g @) s ——
_ 1=y PM(p)
so that relations (3.5) and (3.6) are proved. If v,w ¢ Qg » We can write

‘meewﬂiw
W - w - E W - 8w E @

which, by another application of the mean value theorem, broves relation

(3.7) with the:upper bound 2pM(p)Y§ for the number Lp. 0

As our first step towards the analysis of the incremental method, we
establish a connection between the boundary value problem under consideration

and the solution of an appropriate differential equdtion in the space gp(Q).

~

‘In what follows, the'notationspo(p), yp, BP have the same meaning as in

Lemma 1.

THEOREM 2 . Let a number p > 3 be fized, and let p be any number which

satisfies -

(3.9) 0<p<p (p)



- T2 =

Then, i1f

=1

610 el g0 = o

the differential equation : Find

(3.11)  g:Ae 0,11+ g ¢ zgg
such that
G2 T = (BTG , osascl

(3.13)  g(0) =@
has one and only solution, which in addition satisfies
(3.14) B@EM)) =A , 0sAsl

Proof : We shall simply give a very brief outline of the ﬁroof, which is
well-known (see e.g. CROUZEIX-MIGNOT [1983]).

Relation (3.5) of Lemma 1 insures that the mapping
¢ :y <C°(0,1]; D) ~C°(10,13; ¥ (2))

~N

with

A

A .
() (A) = J '(Q'(x(u))} 1; du, 0<XAs

o : :
is well-defined, and condition (3.10) together with relation (3.6) of

Lemma 1 shows that ¢ maps the complete metric space
z.dif ¢ °(ro,13; Bz)
into 7tself. Using dext relation (3.7) of Lemma 1, one

shows that some iterate Qk » k21, of the maﬁping ® is a contraction of the
_space X, so that ¢ h#s one, and only one, fixed point in ‘the space %, which
is a solutiop of the differential equation (3.11)-(3.13). Conversely, any
solution of the differential equation is clearly a fixed point of the mapping

" 9 in the space %X .



To show that such a solution E satisfies @(i(k)) =AM ,0sAs1,

observe that, by (3.12),
Q= B'@ONE' M - £=5{B@MN) - A, 0sis]
This shows that the mapping A ~+ (B@(A) = Af) « LP(Q) is cohstant on

the interval ]O,1[ and thus on the closed interval by continuity ; finally,

condition (3.13) shows that this constant is Q , and the proof is complete.

0

The next, and final, step consists in establishing that the incremental
method described in Sect. 2 is nothing but Euler’s method in disguise, for
the discretization of the differential equation. (3.11)-(3.13), thereby
providing a proof of the convergence of the method. Again the notations

PPy Y Qg have the same meaning as in Lemma 1.

o’

’

THEOREM 3 . Let a number p > 3 be vfixed and let p be any number satisfying
(3.15) 0 <pc< oo(p)

Then, if

-1
o) ’

(3.16) “fno,p,ﬂ- < oy
Euler's method : Find a finite sequence

(3.1?) . Enegg s O=n<s<N, N: ggiven integer,

suc’hv that

(3.18) !‘I(E;:m.1 - un)- = {Q'(gn)}-lg , 0 £n < N-l ,

3.199 ¢’ =0,

is well-defined, and besides the sequence (gn‘)‘io éo‘incidé_s with the

sequence constructed through egs. (2.18)-(2.20). Finally, there exists a
constant Gb such that

S

n n” e P
2,p, 0 N

(3.20) max ||U° - u

where



'(3.24) B

- 14 -

3.21)  U" = ¢

2l
A
o)
IA
=

), 0

denotes for each integer n = O,l,l..,N,»the unique solution in the ball 32

of the problem

(3.22) BED 3£ Osansn.

Proof : The proof of the well-defined character and of the convergence of

Euler's method are quite classical (cf. e.g. CROUZEIX-MIGNOT [1983]) and
for this reason shall not be reproduced here (suffice it to say that they
essentially rely on assumptions (3.15)land_(3.16».»It simply remains to show
that the sequence gn defined in (3.17)-(3.19) does indeed coincide with the

sequence found in the description of the incremental method.

Expanding the difference By +v) - B () for arbitrary elements

U,V € XP(Q), one finds; using (3.2) :

~

. = =3 d_u 3
(3.23) B!y 5®15pa%%a * 215000 0% * *ipqili I

9 v

*ipa’k"1%p n%"n ¥ akquepq(g) "y

In view of (3.18), one iterationm of Euler's method can also be

written as

But, using (3.23), eqs. (3.24) are seen to coincide with egs. (2.17).

0

Fipal Remarks : In BERNADOU, CIARLET and HU [1982a, 1982b], we shall extend

the present analysis to more general constitutive equations (of the form (1.9))
and we shall also consider the effect of approximating the solution of -the
linearized problems (2.17)-(2.18) by fintte element methods (as is always the

case in actuel computations).



Y

- CIARLET, P.G. [1983] : Topics in Mathematical EZasficity, North~Holland,
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