

On the convergence of incremental methods in finite elasticity

Michel Bernadou, P.G. Ciarlet, J. Hu

▶ To cite this version:

Michel Bernadou, P.G. Ciarlet, J. Hu. On the convergence of incremental methods in finite elasticity. RR-0135, INRIA. 1982. inria-00076425

HAL Id: inria-00076425

https://hal.inria.fr/inria-00076425

Submitted on 24 May 2006

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

CENTRE DE ROCQUENCOURT

Institut National de Recherche en Informatique et en Automatique

Domaine de Voluceau Rocquencourt BP 105 78153 Le Chesnay Cedex France Tél: 954 90 20

Rapports de Recherche

Nº 135

ON THE CONVERGENCE OF INCREMENTAL METHODS IN FINITE ELASTICITY

340. Revi 6 28.06 32.

Michel BERNADOU Philippe G. CIARLET Jianwei HU

Juin 1982

ON THE CONVERGENCE OF INCREMENTAL METHODS

IN FINITE ELASTICITY (1)

Michel BERNADOU*, Philippe G. CIARLET**, Jianwei HU***

ABSTRACT: While the description and use of incremental methods in finite elasticity have received considerable attention in the engineering literature, it seems that its numerical enalysis is an open problem. In this paper, we prove the convergence of such methods when applied to a class of problems in nonlinear, three dimensional, elasticity.

RESUME: Alors que la description et l'utilisation de méthodes incrémentales en élasticité finie sont très répandues parmi les ouvrages à destination des ingénieurs, il semble que l'analyse numérique de ces méthodes est un problème ouvert. Dans ce travail, nous démontrons la convergence de ces méthodes lorsqu'elles sont appliquées à une classe de problèmes d'élasticité non linéaire tridimensionnelle.

Department of Mathematics, Nankai University, TIENTSIN, The People's Republic of China.

⁽¹⁾ To appear in the Proceedings of the Chinese-French Conference on Finite Element Methods, Beijing (China), 19-23 April, 1982

^(*) I.N.R.I.A., Domaine de Voluceau, Rocquencourt, 78150 LE CHESNAY - FRANCE

^(**) Laboratoire d'Analyse Numérique, Université Pierre et Marie Curie, 4, Place Jussieu, 75005 PARIS - FRANCE

^(***) Laboratoire d'Analyse Numérique, Université Pierre et Marie Curie, 4, Place Jussieu, 75005 PARIS - FRANCE and

I - THE BOUNDARY-VALUE PROBLEM OF NONLINEAR, THREE-DIMENSIONAL ELASTICITY

Consider an isotropic, homogeneous, elastic body subjected to body forces in its interior, and to surface forces on a portion of its boundary, the displacement being imposed on the remaining portion of the boundary. A mathematical model for finding the equilibrium of such a mechanical system is a nonlinear, boundary-value problem which we now briefly describe in a formal way (for details, see for instance CIARLET [1983], GURTIN [1981], MARSDEN & HUGHES [1982], WANG & TRUESDELL [1973], WASHIZU [1975]).

Let Ω be a bounded open and connected subset of the space \mathbb{R}^3 , whose boundary Γ is assumed to be sufficiently smooth for all subsequent purposes. We denote by $\chi = (v_i)$ the unit outer normal vector along Γ .

We consider a body which occupies the set $\overline{\Omega}$ in the absence of applied forces, so that $\overline{\Omega}$ is called the *reference configuration*. The body is subjected to body forces of *dead loading type*, represented by a vector field $\underline{f} = (f_i)$ given over Ω (as a rule, Latin indices: i,j,k,p,..., take their values in the set $\{1,2,3\}$) and to surface forces, again of *dead loading* type, represented by a vector field $\underline{g} = (g_i)$ given over a portion Γ_1 of Γ . The fields \underline{f} and \underline{g} respectively measure the density per unit volume (in Ω) and the density per unit area (along Γ_1) of both kinds of applied forces. The problem then consists in solving the following nonlinear boundary value problem for the *displacement field* $\underline{u} = (u_i)$ and the (second) *Piola-Kirchhoff stress tensor field* $\underline{g} = (G_{ij})$ (in what follows, the repeated index convention for summation is systematically used in conjunction with the above rule for Latin indices and the notation ∂_i stands for the usual partial derivative $\frac{\partial}{\partial x_i}$; the tensor $\underline{e}(\underline{u})$ is defined in (1.5) below):

(1.1)
$$-\partial_{j}(\sigma_{ij} + \sigma_{kj}\partial_{k}u_{i}) = f_{i} \text{ in } \Omega,$$

(1.2)
$$\sigma_{ij} = \tilde{\sigma}_{ij}(\underline{e}(\underline{u})) \text{ in } \Omega$$
,

(1.3)
$$(\sigma_{ij} + \sigma_{kj} \partial_k u_i) v_j = g_i \quad \text{on } \Gamma_l$$
,

(1.4)
$$u = \varrho$$
 on Γ_0 .

Equations (1.1) and (1.3) represent the equilibrium equations, expressed in terms of the stress tensor g, in the reference configuration. Equations (1.2) represent the constitutive equation of an elastic, homogeneous, isotropic, material: At each point of the reference configuration, the stress tensor

 $\mathcal{Q} = (\mathcal{O}_{ij})$ is a known function

$$\widetilde{\widetilde{g}}(\underline{e}(\underline{u})) = (\widetilde{\sigma}_{\mathbf{i}\,\mathbf{j}}(\underline{e}(\underline{u})))$$

of the strain tensor

(1.5)
$$e(\underline{u}) = (e_{ij}(\underline{u})), \text{ with } 2e_{ij}(\underline{u}) = \partial_i u_j + \partial_j u_i + \partial_i u_m \partial_j u_m,$$

at the same point. According to the Rivlin-Ericksen theorem (cf.e.g. WANG & TRUESDELL [1973]), the function \widetilde{g} is of the form

(1.6)
$$\tilde{g}(\underline{e}) = \gamma_{0}(\underline{c})\underline{I} + \gamma_{1}(\underline{c})\underline{c} + \gamma_{2}(\underline{c})\underline{c}^{2}$$
,

where the matrix C is defined by the relation

(1.7)
$$C = I + 2e$$
,

and the functions $\gamma_{\alpha}(\underline{\mathbb{C}})$ are symmetric functions of the principal invariants of the matrix $\underline{\mathbb{C}}$. If we make the assumption that the reference configuration is a natural state, i.e.,

$$(1.8) \quad \tilde{g}(\underline{0}) = \underline{0} ,$$

then it is easily derived from (1.6) and (1.8) that, if the functions $\gamma_{\alpha}(\mathbb{C})$ are differentiable at the point $\mathbb{C}=\mathbb{I}$,

(1.9)
$$g = \tilde{g}(\underline{e}) = \lambda(\operatorname{tr} \underline{e})\underline{I} + 2\mu \underline{e} + O(|\underline{e}|),$$

where $|\cdot|$ denotes any norm in \mathbb{R}^9 , and λ et μ are two constants, known as the Lamé coefficients of the constituting material of the body. These constants will be assumed here to satisfy the inequalities

(1.10)
$$\lambda \ge 0$$
 , $\mu > 0$,

as is indeed the case for most "real-life" elastic, homogeneous, isotropic, materials.

A constitutive equation commonly used in practical applications corresponds to the deletion of the higher-order terms in (1.9), i.e., it reduces to

(1.11)
$$g = \lambda(\text{tr } e)I + 2\mu e$$
,

or equivalently, componentwise:

(1.12)
$$\sigma_{ij} = a_{ijpq} e_{pq}$$
, with $a_{ijpq} \stackrel{\text{def}}{=} \lambda \delta_{ij} \delta_{pq} + 2\mu \delta_{ip} \delta_{jq}$.

We shall refer to a material obeying such a constitutive equation as a St Venant-Kirchhoff material. Let us now briefly discuss an existence result for the boundary value problem (1.1)-(1.4), which relies on the implicit function theorem. Another successful approach consists in minimizing the associated energy (in this direction, see the famous paper of BALL [1977]), but this second approach does not seem to be appropriate for our present purposes. For a more detailed discussion, see CIARLET [1982].

To fix ideas, consider the case of a St Venant-Kirchhoff material (this is not a restriction) and of the "pure displacement problem" (this is an essential restriction) that is, $\Gamma = \Gamma_0$. Then the boundary value problem (1.1)-(1.4) reduces in this case to

(1.13)
$$-\partial_j(\sigma_{ij} + \sigma_{kj}\partial_k u_i) = f_i \text{ in } \Omega$$
,

(1.14)
$$\sigma_{ij} = a_{ijpq} e_{pq}(\underline{u})$$
 in Ω ,

(1.15)
$$u = 0$$
 on Γ ,

or, in terms of the displacement vector only (taking into account the symmetry property $a_{ijkl} = a_{ijlk}$):

$$(1.16) \quad \mathcal{B}_{\mathbf{i}}(\mathbf{u}) \stackrel{\text{def}}{=} -\partial_{\mathbf{j}}(\mathbf{a}_{\mathbf{ijpq}}\partial_{\mathbf{p}^{\mathbf{u}}\mathbf{q}} + \frac{1}{2} \mathbf{a}_{\mathbf{ijpq}}\partial_{\mathbf{p}^{\mathbf{u}}\mathbf{m}}\partial_{\mathbf{q}^{\mathbf{u}}\mathbf{m}} + \mathbf{a}_{\mathbf{kjpq}}\partial_{\mathbf{p}^{\mathbf{u}}\mathbf{q}}\partial_{\mathbf{k}^{\mathbf{u}}\mathbf{i}} + \\ + \frac{1}{2} \mathbf{a}_{\mathbf{kjpq}}\partial_{\mathbf{p}^{\mathbf{u}}\mathbf{m}}\partial_{\mathbf{q}^{\mathbf{u}}\mathbf{m}}\partial_{\mathbf{k}^{\mathbf{u}}\mathbf{i}}) = f_{\mathbf{i}} \quad \text{in } \Omega ,$$

(1.17)
$$u_i = 0 \text{ on } \Gamma$$
.

Since the Sobolev space $W^{1,p}(\Omega)$, $\Omega \subset \mathbb{R}^3$, is an algebra for p > 3 (see e.g. ADAMS [1975, p. 115]), the nonlinear mapping \mathcal{R} defined in (1.16) maps the space $W^{2,p}(\Omega) \stackrel{\text{def}}{=} (W^{2,p}(\Omega))^3$ into the space $L^p(\Omega) \stackrel{\text{def}}{=} (L^p(\Omega))^3$, and besides it is (infinitely) differentiable between these two spaces, as a sum of continuous multilinear mappings. Equations (1.16)-(1.17) then consist in finding a function

(1.18)
$$\underline{\mathbf{u}} \in \underline{\mathbf{v}}^{\mathbf{p}}(\Omega) \stackrel{\text{def}}{=} \{\underline{\mathbf{v}} = \underline{\mathbf{w}}^{2}, \mathbf{p}(\Omega) ; \underline{\mathbf{v}} = \underline{0} \text{ on } \Gamma\}$$

such that

(1.19)
$$g(u) = f$$
,

where the mapping

(1.20)
$$\mathcal{B} = (\mathcal{B}_i) : \mathcal{V}^{\mathbf{p}}(\Omega) + \mathcal{L}^{\mathbf{p}}(\Omega)$$

is defined as in (1.16). In order to use the *implicit function theorem* in a neighborhood of the origin in both spaces $V^p(\Omega)$ and $L^p(\Omega)$ (since u = 0 is clearly a solution corresponding to f = 0, we must verify that the derivative $f'(\Omega)$ is an isomorphism between the spaces $V^p(\Omega)$ and $L^p(\Omega)$. But the equation $f'(\Omega)$

$$(1.21) \qquad \mathcal{Z}'(\mathfrak{Q})\mathfrak{U} = \mathfrak{f}$$

is precisely the system of linear elasticity :

(1.22)
$$-\partial_{i}(a_{ijpq}\varepsilon_{pq}(u)) = f_{i} \text{ in } \Omega$$
,

(1.23)
$$u = Q$$
 on Γ ,

where the tensor $\varepsilon(\underline{u}) = (\varepsilon_{ij}(\underline{u}))$, with

(1.24)
$$2\epsilon_{ij}(\underline{u}) \stackrel{\text{def}}{=} \partial_i u_j + \partial_j u_i$$
,

is the so-called *linearized strain tensor*. Since the operator $\mathcal{E}'(\mathfrak{Q}): \mathcal{V}^p(\mathfrak{Q}) \to \mathcal{L}^p(\mathfrak{Q})$ is clearly continuous and one-to-one, it remains to verify that it is *onto*, i.e., we need a *regularity result* of the form :

$$(1.25) \quad \mathcal{B}'(\mathfrak{Q})\mathfrak{U} \in \mathfrak{L}^{\mathfrak{P}}(\Omega) \Longrightarrow \mathfrak{U} \in \mathfrak{V}^{\mathfrak{P}}(\Omega) ,$$

where u is the solution (known to exist by the variational theory in the space $(H_0^1(\Omega))^3$) of (1.22)-(1.23). As shown by NEČAS [1967] for p = 2 and by GEYMONAT [1965] for 1 \infty, the regularity result (1.25) holds, basically because the boundary condition does not change along Γ . It is the lack of such a regularity result in the case of the genuine mixed displacement-problem (1.1)-(1.4) that prevents the use of the implicit function theorem in the general case .

This type of analysis has been applied by CIARLET & DESTUYNDER [1979] to the St Venant-Kirchhoff material along the lines indicated here; it has also

been independently applied to more general constitutive equation by MARSDEN & HUGHES [1978] and VALENT [1979], who proved the following existence result:

THEOREM 1: Assume that the functions $\tilde{\sigma}_{ij}$ which appear in the constitutive equation (1.28) are smooth enough at the point $\underline{e} = \underline{0}$ and that there exists a constant $\underline{\mu}$ such that

(1.26)
$$\mu > 0$$
 and $\frac{\partial \tilde{\sigma}_{ij}}{\partial e_{kl}}$ (o) $\xi_{ij}\xi_{kl} \ge 2\mu\xi_{ij}\xi_{ij}$,

for all symmetric tensors $\xi = (\xi_{ij})$. Then for each number p > 3, there exist a neighborhood \mathfrak{T}^p of \mathfrak{Q} in $L^p(\Omega)$ and a neighborhood \mathfrak{T}^p of \mathfrak{Q} in $L^p(\Omega)$ such that, for each $f \in \mathfrak{T}^p$, the boundary value problem

(1.27)
$$-\partial_{j}(\sigma_{ij} + \sigma_{kj}\partial_{k}u_{i}) = f_{i} \text{ in } \Omega$$
,

(1.28)
$$\sigma_{ij} = \tilde{\sigma}_{ij} (\underline{e}(\underline{u})) \text{ in } \Omega$$
,

(1.29)
$$u = 0 \text{ on } \Gamma$$
,

has exactly one solution $\underline{u}(\underline{f})$ in \underline{v}^p .

2 - DESCRIPTION OF THE INCREMENTAL METHOD

Let us now review the application of the *incremental method* to the nonlinear boundary value problem described in Sect.1, as it is commonly presented in the engineering or mechanical litterature. We describe here the so-called *total Lagrangian method* (as it is presented for instance in WASHIZU [1975, Appendix I, Section 9]), in the special case of a St Venant-Kirchhoff material. For similar or related discussions, see ARGYRIS & KLEIBER [1977], MASON [1980], PIAN [1976].

Our problem takes the form of eqs. (1.13)-(1.15), which we rewrite here for convenience :

(2.1)
$$- \partial_{j} (\sigma_{ij} + \sigma_{kj} \partial_{k} u_{i}) = f_{i} \text{ in } \Omega,$$

(2.2)
$$\sigma_{ij} = a_{ijpq} e_{pq} (u) \text{ in } \Omega$$
,

(2.3)
$$u = 0 \text{ on } \Gamma$$
,

with

(2.4)
$$a_{ijpq} = \lambda \delta_{ij} \delta_{pq} + 2\mu \delta_{ip} \delta_{jq}, \quad \lambda \geq 0, \quad \mu > 0.$$

We also assume that there exists a number p > 3 such that the whole segment [0,f] belongs to the neighborhood \mathcal{F}^p given in Theorem 1.

The basic idea of the *incremental method* is to let the body forces vary by "small" *increments*

(2.5)
$$\Delta f = \frac{1}{N} f$$
, N: a given "large" integer,

from 0 to the given force f, and to recursively compute approximations g to the exact solutions

corresponding to the successive forces

(2.7)
$$f^n = n\Delta f$$
, $1 \le n \le N$

(such solutions $\underline{u}(\underline{f}^n)$ exist by Theorem 1), each approximation being computed by an appropriate "linearization around the previous approximation". In this fashion the nonlinear problem is approximated by a sequence of linear problems.

Using definitions (2.6), let

(2.8)
$$\Delta U_{i}^{n \text{ def}} U_{i}^{n+1} - U_{i}^{n}$$
,

(2.9)
$$\Delta e_{ij}^{n} \stackrel{\text{def}}{=} e_{ij}(U^{n+1}) - e_{ij}(U^{n})$$
,

denote the displacement increments and the corresponding strain increments, respectively, for $0 \le n \le N-1$, so that the corresponding stress increments take the form

(2.10)
$$\sum_{ij}^{n+1} - \sum_{ij}^{n} = a_{ijpq} \Delta e_{pq}^{n} ,$$

with

(2.11)
$$\sum_{ij}^{n} \stackrel{\text{def}}{=} a_{ijpq} e_{pq}(U^n)$$
.

Since, by definition,

(2.12)
$$-\partial_{j}(\sum_{ij}^{n+l} + \sum_{kj}^{n+l} \partial_{k}U_{i}^{n+l}) = f_{i}^{n+l} = f_{i}^{n} + \Delta f_{i} \text{ in } \Omega$$
,

(2.13)
$$-\partial_{i}(\sum_{i,j}^{n} + \sum_{k,j}^{n} \partial_{k}U_{i}^{n}) = f_{i}^{n} \text{ in } \Omega,$$

where \sum_{ij}^{n+1} and \sum_{ij}^{n} are related through relation (2.10), one obtains, after subtracting eqs. (2.13) from eqs. (2.12), that the n-th displacement increment $\Delta \underline{U}^{n} = (\Delta U_{i}^{n})$ satisfies the following boundary value problem (notice that, up to this point, no approximation has been made):

$$(2.14) - \partial_{j}(a_{ijpq}\Delta e_{pq}^{n} + \sum_{kj}^{n}\partial_{k}\Delta U_{i}^{n} + a_{kjpq}\Delta e_{pq}^{n}\partial_{k}U_{i}^{n} + a_{kjpq}\Delta e_{pq}^{n}\partial_{k}\Delta U_{i}^{n}) = \Delta f_{i} \text{ in } \Omega,$$

$$(2.15) \qquad 2\Delta e_{pq}^{n} = \partial_{p}\Delta u_{q}^{n} + \partial_{q}\Delta u_{p}^{n} + \partial_{p}\Delta u_{m}^{n} \partial_{q}u_{m}^{n} + \partial_{p}u_{m}^{n} \partial_{q}\Delta u_{m}^{n} + \partial_{p}\Delta u_{m}^{n} \partial_{q}\Delta u_{m}^{n} \quad \text{in } \Omega,$$

(2.16)
$$\sum_{kj}^{n} = a_{kjpq}^{e} e_{pq}^{(U^{n})} \text{ in } \Omega,$$

(2.17)
$$\Delta \underline{y}^n = Q \text{ on } \Gamma$$
.

We are now in a position to define an approximate problem: Considering that the n-th displacement \mathbb{U}^n is known, and using eqs. (2.15)-(2.16) in eqs. (2.14), we obtain a nonlinear boundary value problem with respect to the unknown vector $\Delta\mathbb{U}^n$. Then the approximation simply consists in deleting all the terms which are nonlinear with respect to the unknown $\Delta\mathbb{U}^n$ in the resulting problem. In this fashion, we obtain that the n-th approximate displacement increment $\delta\mathbb{U}^n$ should be solution of the following linear boundary value problem, where \mathbb{U}^n likewise denotes the n-th approximate displacement vector:

$$(2.18) - \partial_{j}(a_{ijpq}\partial_{p}\delta u_{q}^{n} + a_{ijpq}\partial_{p}u_{m}^{n}\partial_{q}\delta u_{m}^{n} + a_{kjpq}\partial_{k}u_{i}^{n}\partial_{p}\delta u_{q}^{n} +$$

$$+ a_{kjpq}\partial_{k}u_{i}^{n}\partial_{p}u_{m}^{n}\partial_{q}\delta u_{m}^{n} + a_{kjpq}e_{pq}(u_{m}^{n})\partial_{k}\delta u_{i}^{n}) = \Delta f_{i} \text{ in } \Omega ,$$

(2.19)
$$\delta u^n = 0$$
 on Γ .

This is exactly the problem obtained, in an equivalent variational form, in WASHIZU [1975, eq. (I-9.42), p. 393].

Provided the boundary value problem (2.18)-(2.19) has a unique solution (this will be proved in Theorem 3 below), we define the (n+1)-st approximate displacement

(2.20)
$$u^{n+1} = u^n + \delta u^n$$
,

which in turn allows us to similarly compute the (n+1)-st approximate displacement increment, etc. In this fashion the *incremental method* is completely defined; it ends with the computation of the N-th approximate displacement u^N , which will be proved later to approach the exact solution $u(\underline{f})$ as the integer N approaches infinity.

3 - CONVERGENCE OF THE INCREMENTAL METHOD

Let us first prove a number of properties (useful for the sequel) of the nonlinear mapping

$$(3.1) \quad \mathcal{Z}: \mathcal{V}^{\mathbf{p}}(\Omega) \stackrel{\text{def}}{=} \{ \mathbf{y} \in \mathcal{W}^{2,\mathbf{p}}(\Omega) ; \mathbf{y} = \mathbf{Q} \text{ on } \Gamma \} \Rightarrow \mathcal{L}^{\mathbf{p}}(\Omega)$$

defined (cf. (1.16)) by

$$(3.2) \quad \mathcal{B}_{\mathbf{i}}(\mathbf{u}) = -\partial_{\mathbf{j}}(\mathbf{a}_{\mathbf{i}\mathbf{j}\mathbf{p}\mathbf{q}}\partial_{\mathbf{p}}\mathbf{u}_{\mathbf{q}} + \frac{1}{2}\mathbf{a}_{\mathbf{i}\mathbf{j}\mathbf{p}\mathbf{q}}\partial_{\mathbf{p}}\mathbf{u}_{\mathbf{m}}\partial_{\mathbf{q}}\mathbf{u}_{\mathbf{m}} + \\ + \mathbf{a}_{\mathbf{k}\mathbf{j}\mathbf{p}\mathbf{q}}\partial_{\mathbf{p}}\mathbf{u}_{\mathbf{q}}\partial_{\mathbf{k}}\mathbf{u}_{\mathbf{i}} + \frac{1}{2}\mathbf{a}_{\mathbf{k}\mathbf{j}\mathbf{p}\mathbf{q}}\partial_{\mathbf{p}}\mathbf{u}_{\mathbf{m}}\partial_{\mathbf{q}}\mathbf{u}_{\mathbf{m}}\partial_{\mathbf{k}}\mathbf{u}_{\mathbf{i}}),$$

with

(3.3)
$$a_{ijpq} = \lambda \delta_{ij} \delta_{pq} + 2\mu \delta_{ip} \delta_{jq} , \quad \lambda \geq 0 , \quad \mu > 0 .$$

As already observed, because the space $\mathbb{W}^{1,p}(\Omega)$, $\Omega \subset \mathbb{R}^3$, is an algebra for each number p>3, the mapping $\mathfrak{Z}: \underline{V}^p(\Omega) \to \underline{L}^p(\Omega)$ is well-defined and of class \mathcal{C}^{∞} for such values of p.

For each integer $m \ge 0$ and each number $p \ge 1$, we denote by

$$\|\mathbf{v}\|_{\mathbf{m},\mathbf{p},\Omega} = \left\{ \int_{\Omega} \sum_{|\alpha| \le \mathbf{m}} |\partial^{\alpha} \mathbf{v}|^{\mathbf{p}} d\mathbf{x} \right\}^{1/\mathbf{p}}$$

the norm of the Sobolev space $W^{m,p}(\Omega)$. If X and Y are two normed vector spaces, we let

$$Isom(X;Y) = \{A \in \mathcal{L}(X;Y) ; A^{-1} exists and A^{-1} \in \mathcal{L}(Y;X)\},$$

and for notational brevity we denote by the same symbol $\|\cdot\|$ the norms of the spaces $\mathcal{L}(X;Y)$, $\mathcal{L}(Y;X)$, $\mathcal{L}_2(X;Y)$, etc... (such as in (3.6)-(3.7) below). Finally, we let $\mathcal{B}'(u) \in \mathcal{L}(X;Y)$, $\mathcal{B}''(u) \in \mathcal{L}_2(X;Y)$, etc... denote the successive Fréchet derivatives at a point $u \in X$ (when they exist) of a mapping $\mathcal{B}: X \to Y$.

LEMMA 1 . Let a number p>3 be fixed. Then there exists a number $\rho_0(p)>0$ such that, for any number ρ such that

(3.4)
$$\rho < \rho_0(p)$$
,

one has

$$(3.5) \qquad \underline{v} \in \underline{\mathcal{B}}_{\rho}^{p} \Rightarrow \underline{\mathcal{B}}'(\underline{v}) \in \text{Isom } (\underline{v}^{p}(\Omega) ; \underline{L}^{p}(\Omega)) ,$$

$$(3.6) \qquad \Upsilon_{\rho} \stackrel{\text{def}}{=} \sup_{\substack{\mathbf{y} \in \mathbb{Z}_{\rho} \\ \mathbf{y} \in \mathbb{Z}_{\rho}}} \| \{ \mathcal{Z}'(\mathbf{y}) \}^{-1} \| < + \infty ,$$

$$(3.7) \qquad L_{\rho} \stackrel{\text{def}}{=} \sup_{\substack{\mathbf{y}, \mathbf{y} \in \mathbb{Z}_{\rho} \\ \mathbf{y}, \mathbf{y} \notin \mathbf{y}}} \frac{\| \{ \mathcal{Z}'(\mathbf{y}) \}^{-1} - \{ \mathcal{Z}'(\mathbf{w}) \}^{-1} \|}{\| \mathbf{y} - \mathbf{w} \|_{2, p, \Omega}} < + \infty$$

where

$$(3.8) \qquad \mathcal{B}_{\rho}^{\mathbf{p}} \stackrel{\text{def}}{=} \{ \underline{\mathbf{y}} \in \underline{\mathbf{y}}^{\mathbf{p}}(\Omega) \; ; \; \|\underline{\mathbf{y}}\|_{2,\mathbf{p},\Omega} \leq \rho \}.$$

<u>Proof</u>: Using the fact that the mapping \mathcal{B} is a sum of continuous linear, bilinear, and trilinear mappings, we exactly have, for arbitrary functions $\mathbf{u},\mathbf{v}\in\mathbf{v}^{\mathbf{p}}(\Omega)$,

$$\mathcal{Z}(\underline{\mathtt{u}}+\underline{\mathtt{v}}) \ = \ \mathcal{Z}(\underline{\mathtt{u}}) \ + \ \mathcal{Z}'(\underline{\mathtt{u}})\underline{\mathtt{v}} \ + \frac{1}{2} \ \mathcal{Z}''(\underline{\mathtt{u}})(\underline{\mathtt{v}},\underline{\mathtt{v}}) \ + \frac{1}{6} \ \mathcal{Z}'''(\underline{\mathtt{u}})(\underline{\mathtt{v}},\underline{\mathtt{v}},\underline{\mathtt{v}}) \ .$$

Expanding $\mathcal{B}(\underline{u}+\underline{v})$ with the help of (3.2) and using the symmetry of the second derivative $\mathcal{B}''(\underline{u})$, we find that for arbitrary functions $\underline{u},\underline{v},\underline{w}\in\underline{v}^p(\Omega)$, each function $\mathcal{B}''_i(\underline{u})(\underline{v},\underline{w})\in L^p(\Omega)$ is a sum of terms of either form (up to multiplicative constants involving the Lamé constants λ,μ of (3.3)):

$$\partial_{j}(\partial_{p}v_{m}\partial_{q}w_{m}) \text{ or } \partial_{j}(\partial_{1}u_{i}\partial_{p}v_{m}\partial_{q}w_{m})$$
,

so that, using again the algebricity of the Sobolev space $W^{1,p}(\Omega)$ for p>3, we find that there exists a constant C such that

$$\|\mathcal{Z}''(\underline{u})(\underline{y},\underline{w})\|_{o,p,\Omega} \leq C(1+\|\underline{u}\|_{2,p,\Omega})\|\underline{y}\|_{2,p,\Omega}\|\underline{w}\|_{2,p,\Omega}$$

for all $u,v,w \in W^{2,p}(\Omega)$. Therefore,

$$\|\mathcal{Z}''(\underline{u})\| = \sup_{\substack{\underline{v} \neq \underline{0} \\ \underline{v} \neq \underline{0}}} \frac{\|\mathcal{Z}''(\underline{u})(\underline{v},\underline{w})\|_{0,p,\Omega}}{\|\underline{v}\|_{2,p,\Omega}} \le C(1 + \|\underline{u}\|_{2,p,\Omega})$$

and the function

$$M: \rho \ge 0 \rightarrow M(\rho) \stackrel{\text{def}}{=} \sup_{\substack{u \\ z,p,\Omega}} \|\underline{\mathcal{B}}''(\underline{u})\|$$

is thus well-defined and non-decreasing on $[0,+\infty)$. Besides,

$$\|y\|_{2,p,\Omega} \le \rho \Rightarrow \|\mathcal{Z}'(y) - \mathcal{Z}'(Q)\| \le \rho M(\rho)$$
,

by the mean-value theorem. Since (cf. Sect. 1)

$$\mathcal{Z}'(Q) \in \text{Isom}(\underline{V}^{p}(\Omega) ; \underline{L}^{p}(\Omega))$$
,

we deduce from the identity

$$\mathcal{Z}'(y) = \mathcal{Z}'(Q) \left\{ \mathbf{I} + \left\{ \mathcal{Z}'(Q) \right\}^{-1} \left(\mathcal{Z}'(y) - \mathcal{Z}'(Q) \right) \right\},$$

that, if (cf. (3.4))

$$\|\mathbf{y}\|_{2,p,\Omega} \le \rho \text{ with } \rho M(\rho) < \gamma_0^{-1} \text{ and } \gamma_0 = \|\{\mathbf{z}^{-1}(0)\}^{-1}\|$$
,

then the mapping $\mathcal{Z}'(y): \mathcal{V}^{p}(\Omega) \to \mathcal{L}^{p}(\Omega)$ is an isomorphism, and

$$\|\{\mathcal{B}'(\mathbf{z})\}^{-1}\| \leq \frac{\gamma_0}{1-\gamma_0\rho M(\rho)}$$

so that relations (3.5) and (3.6) are proved. If $y, w \in \mathcal{B}_{\rho}^{p}$, we can write the equality

$$\left\{ \mathcal{Z}'(\mathbf{y}) \right\}^{-1} - \left\{ \mathcal{Z}'(\mathbf{y}) \right\}^{-1} = \left\{ \mathcal{Z}'(\mathbf{y}) \right\}^{-1} \left(\mathcal{Z}'(\mathbf{y}) - \mathcal{Z}'(\mathbf{y}) \right) \left\{ \mathcal{Z}'(\mathbf{y}) \right\}^{-1}$$

which, by another application of the mean value theorem, proves relation (3.7) with the upper bound $2\rho M(\rho)\gamma_{\rho}^{2}$ for the number L_{ρ} .

As our first step towards the analysis of the incremental method, we establish a connection between the boundary value problem under consideration and the solution of an appropriate differential equation in the space $\nabla^{p}(\Omega)$. In what follows, the notations $\rho_{0}(p)$, γ_{p} , \mathcal{B}_{p}^{p} have the same meaning as in Lemma 1.

THEOREM 2 . Let a number p > 3 be fixed, and let ρ be any number which satisfies

(3.9)
$$0 < \rho < \rho_0(p)$$

Then, if

(3.10)
$$\|f\|_{\rho,p,\Omega} \leq \rho \gamma_{\rho}^{-1}$$
,

the differential equation : Find

(3.11)
$$\widetilde{\underline{u}} : \lambda \in [0,1] \rightarrow \widetilde{\underline{u}}(\lambda) \in \mathcal{B}_{0}^{p}$$

such that

$$(3.12) \qquad \widetilde{\underline{\mathfrak{u}}}'(\lambda) = \{ \mathcal{B}'(\widetilde{\underline{\mathfrak{u}}}(\lambda)) \}^{-1} \underline{\mathfrak{f}} \quad , \quad 0 \le \lambda \le 1$$

$$(3.13) \qquad \widetilde{u}(0) = 0$$

has one and only solution, which in addition satisfies

(3.14)
$$\mathcal{B}(\widetilde{\mathfrak{u}}(\lambda)) = \lambda f$$
, $0 \le \lambda \le 1$.

<u>Proof</u>: We shall simply give a very brief outline of the proof, which is well-known (see e.g. CROUZEIX-MIGNOT [1983]).

Relation (3.5) of Lemma 1 insures that the mapping

$$\Phi: \, \widetilde{\underline{y}} \, \in \mathcal{C}^{\, \circ}([0,1]; \, \underline{\mathcal{B}}^p_0) \, + \mathcal{C}^{\, \circ}([0,1]; \, \underline{y}^p(\Omega))$$

with

$$\Phi(\widetilde{y})(\lambda) = \int_{0}^{\lambda} \{ \mathcal{E}'(\widetilde{y}(\mu)) \}^{-1} f d\mu , \quad 0 \le \lambda \le 1$$

is well-defined, and condition (3.10) together with relation (3.6) of Lemma 1 shows that Φ maps the complete metric space

$$z^{\text{def}} c^{\text{o}}([0,1]; B_{\rho}^{\text{p}})$$

into itself. Using next relation (3.7) of Lemma 1, one

shows that some iterate Φ^k , $k \ge l$, of the mapping Φ is a contraction of the space $\mathcal X$, so that Φ has one, and only one, fixed point in the space $\mathcal X$, which is a solution of the differential equation (3.11)-(3.13). Conversely, any solution of the differential equation is clearly a fixed point of the mapping Φ in the space $\mathcal X$.

To show that such a solution $\widetilde{\underline{u}}$ satisfies $\widetilde{\underline{g}}(\widetilde{\underline{u}}(\lambda)) = \lambda \underline{f}$, $0 \le \lambda \le 1$, observe that, by (3.12),

This shows that the mapping $\lambda \to (\cancel{\mathbb{S}}(\mathfrak{u}(\lambda)) - \lambda f) \in L^p(\Omega)$ is constant on the interval]0,1[and thus on the closed interval by continuity; finally, condition (3.13) shows that this constant is 0, and the proof is complete.

The next, and final, step consists in establishing that the *incremental* method described in Sect. 2 is nothing but Euler's method in disguise, for the discretization of the differential equation. (3.11)-(3.13), thereby providing a proof of the convergence of the method. Again the notations $\rho_{o}(p)$, γ_{o} , β_{o}^{p} have the same meaning as in Lemma 1.

THEOREM 3 . Let a number p > 3 be fixed and let p be any number satisfying

(3.15)
$$0 < \rho < \rho_0(p)$$
.

Then, if

(3.16)
$$\|f\|_{0,p,\Omega} \leq \rho \gamma_{\rho}^{-1}$$
,

Euler's method : Find a finite sequence

(3.17)
$$u^n \in \mathcal{B}_{\rho}^p$$
, $0 \le n \le N$, $N : a given integer$,

such that

(3.18)
$$N(\underline{u}^{n+1} - \underline{u}^n) = \{ \underline{\beta} '(\underline{u}^n) \}^{-1} \underline{f} , \quad 0 \le n \le N-1 ,$$

$$(3.19)$$
 $y^0 = 0$,

is well-defined, and besides the sequence $(\underline{u}^n)_{n=0}^N$ coincides with the sequence constructed through eqs. (2.18)-(2.20). Finally, there exists a constant \mathcal{C}_0 such that

(3.20)
$$\max_{0 \le n \le N} \|\underline{y}^n - \underline{y}^n\|_{2,p,\Omega} = \frac{C_{\rho}}{N}$$

where

(3.21)
$$\underline{U}^{n} = \underline{u}(\frac{n}{N}), \quad 0 \leq n \leq N,$$

denotes for each integer n = 0,1,...,N, the unique solution in the ball ${\it B}^{\rm p}_{\ \rho}$ of the problem

$$(3.22) \qquad \mathcal{Z}(\underline{U}^n) = \frac{n}{N} \, \underline{f}, \quad 0 \leq n \leq N .$$

<u>Proof</u>: The proof of the well-defined character and of the convergence of Euler's method are quite classical (cf. e.g. CROUZEIX-MIGNOT [1983]) and for this reason shall not be reproduced here (suffice it to say that they essentially rely on assumptions (3.15) and (3.16)). It simply remains to show that the sequence u^n defined in (3.17)-(3.19) does indeed coincide with the sequence found in the description of the incremental method.

Expanding the difference $\mathcal{Z}(\underline{u}+\underline{v})-\mathcal{Z}(\underline{u})$ for arbitrary elements $\underline{u},\underline{v}\in\underline{v}^p(\Omega)$, one finds, using (3.2):

$$(3.23) \qquad \mathcal{B}_{i}^{!}(\underline{u})\underline{v} = -\partial_{j}(a_{ijpq}\partial_{p}v_{q} + a_{ijpq}\partial_{p}u_{m}\partial_{q}v_{m} + a_{kjpq}\partial_{k}u_{i}\partial_{p}v_{q} + a_{kjpq}\partial_{k}u_{i}\partial_{p}v_{q} + a_{kjpq}\partial_{k}u_{i}\partial_{p}u_{m}\partial_{q}v_{m} + a_{kjpq}\partial_{k}u_{i}\partial_{p}v_{q} + a_{kjpq}\partial_{k}u_{i}\partial_{p}u_{m}\partial_{q}v_{m} + a_{kjpq}\partial_{k}v_{i}).$$

In view of (3.18), one iteration of Euler's method can also be written as

$$\mathcal{B}_{i}^{!}(\underline{u}^{n})\delta\underline{u}^{n} = \frac{1}{N}f_{i}, \quad \delta\underline{u}^{n} = \underline{u}^{n+1} - \underline{u}^{n}.$$

But, using (3.23), eqs. (3.24) are seen to coincide with eqs. (2.17).

Final Remarks: In BERNADOU. CIARLET and HU [1982a, 1982b], we shall extend the present analysis to more general constitutive equations (of the form (1.9)) and we shall also consider the effect of approximating the solution of the linearized problems (2.17)-(2.18) by finite element methods (as is always the case in actual computations).

REFERENCES

- ADAMS, R.A. [1975]: Sobolev Spaces, Academic Press, New York.
- ARGYRIS, J.H.; KLEIBER, M. [1977]: Incremental formulation in nonlinear mechanics and large strain elasto-plasticity; Natural approach, Part. I, Comput. Methods Appl. Mech. Engrg. 11, 215-248.
- BALL, J.M. [1977]: Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal. 63, 337-403.
- BERNADOU, M.; CIARLET, P.G.; HU, J. [1982a]: On the convergence of the semi-discrete incremental method in nonlinear, three-dimensional, elasticity, to appear.
- BERNADOU, M.; CIARLET, P.G.; HU, J. [1982b]: On the convergence of the fully discrete incremental method in nonlinear, three dimensional, elasticity, to appear.
- CIARLET, P.G. [1982]: Quelques remarques sur les problèmes d'existence en élasticité non linéaire, to appear in Proceedings Fifth International Colloquium, INRIA (déc. 1981).
- CIARLET, P.G. [1983]: Topics in Mathematical Elasticity, North-Holland, Amsterdam.
- CIARLET, P.G.; DESTUYNDER, P. [1979]: A justification of a nonlinear model in plate theory, Comput. Methods Appl. Mech. Engrg. 17/18, 227-258.
- CROUZEIX, M.; MIGNOT, A. [1983]: Analyse Numérique des Equations Différentielles, Masson, Paris.
- GEYMONAT, G. [1965]: Sui problemi ai limiti per i sistemi lineari ellitici, Ann. Mat. Pura Appl. 69, 207-284.
- GURTIN, M.E. [1981]: Topics in Finite Elasticity, CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, Philadelphia.
- MARSDEN, J.E.; HUGHES, T.J.R. [1978]: Topics in the mathematical foundations of elasticity, in Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, Vol. 2, pp. 30-285, Pitman, Londres.
- MARSDEN, J.E.; HUGHES, T.J.R. [1982]: Mathematical Foundations of Elasticity, (to appear).
- MASON, J. [1980]: Variational, Incremental and Energy Methods in Solid Mechanics and Shell Theory, Elsevier, Amsterdam.
- NECAS, J. [1967]: Les Méthodes Directes en Théorie des Equations Elliptiques, Masson, Paris.
- PIAN, T.H.H. [1976]: Variational principles for incremental finite element methods, Journal of the Franklin Institute 302, 473-488.

- VALENT, T. [1979] : Teoremi di esistenza e unicità in elastostatica finita, Rend. Sem. Mat. Univ. Padova 60, 165-181.
- WANG, C.-C.; TRUESDELL, C. [1973]: Introduction to Rational Elasticity, Noord hoff, Groningen.
- WASHIZU, K. [1975]: Variational Methods in Elasticity and Plasticity, Second Edition, Pergamon, Oxford.

•			
4,			
<i>*</i>			
		-	
•			
			,
4			
<i>></i>			
•			
,			
للعادة المتعاد المتعادات المتعادات المتعادية المعادات المتعادات المتعادات المتعادات المتعادات المتعادات	داها المفاحدة بالمستوال ورانور الوبا	y product a water to the control of	was see to see