83 research outputs found
Copolymer adsorption kinetics at a selective liquid-liquid interface: Scaling theory and computer experiment
We consider the adsorption kinetics of a regular block-copolymer of total
length and block size at a selective liquid-liquid interface in the
limit of strong localization. We propose a simple analytic theory based on
scaling considerations which describes the relaxation of the initial coil into
a flat-shaped layer. The characteristic times for attaining equilibrium values
of the gyration radius components perpendicular and parallel to the interface
are predicted to scale with chain length and block length as
(here is the Flory exponent)
and as , although initially the rate of coil
flattening is expected to decrease with block size as . Since
typically for multiblock copolymers, our results suggest that the
flattening dynamics proceeds faster perpendicular rather than parallel to the
interface. We also demonstrate that these scaling predictions agree well with
the results of extensive Monte Carlo simulations of the localization dynamics.Comment: 4 pages, 4 figures, submited to Europhys. Let
Topological charges and the genus of surfaces
We show that the topological charge of the n-soliton solution of the
sine-Gordon equation n is related to the genus g > 1 of a constant negative
curvature compact surface described by this configuration. The relation is
n=2(g-1), where n is even. The moduli space of complex dimension B(g)=3(g-1)
corresponds precisely to the freedom to choosing the configuration with n
solitons of arbitrary positions and velocities. We speculate also that the odd
soliton states will describe the unoriented surfaces.Comment: 8 pages, Latex. To be published in Journal of Geommetry and Physic
Quantum computers in phase space
We represent both the states and the evolution of a quantum computer in phase
space using the discrete Wigner function. We study properties of the phase
space representation of quantum algorithms: apart from analyzing important
examples, such as the Fourier Transform and Grover's search, we examine the
conditions for the existence of a direct correspondence between quantum and
classical evolutions in phase space. Finally, we describe how to directly
measure the Wigner function in a given phase space point by means of a
tomographic method that, itself, can be interpreted as a simple quantum
algorithm.Comment: 16 pages, 7 figures, to appear in Phys Rev
Features of Time-independent Wigner Functions
The Wigner phase-space distribution function provides the basis for Moyal's
deformation quantization alternative to the more conventional Hilbert space and
path integral quantizations. General features of time-independent Wigner
functions are explored here, including the functional ("star") eigenvalue
equations they satisfy; their projective orthogonality spectral properties;
their Darboux ("supersymmetric") isospectral potential recursions; and their
canonical transformations. These features are illustrated explicitly through
simple solvable potentials: the harmonic oscillator, the linear potential, the
Poeschl-Teller potential, and the Liouville potential.Comment: 18 pages, plain LaTex, References supplemente
Anatomy of quantum chaotic eigenstates
The eigenfunctions of quantized chaotic systems cannot be described by
explicit formulas, even approximate ones. This survey summarizes (selected)
analytical approaches used to describe these eigenstates, in the semiclassical
limit. The levels of description are macroscopic (one wants to understand the
quantum averages of smooth observables), and microscopic (one wants
informations on maxima of eigenfunctions, "scars" of periodic orbits, structure
of the nodal sets and domains, local correlations), and often focusses on
statistical results. Various models of "random wavefunctions" have been
introduced to understand these statistical properties, with usually good
agreement with the numerical data. We also discuss some specific systems (like
arithmetic ones) which depart from these random models.Comment: Corrected typos, added a few references and updated some result
Semiclassical theory for many-body Fermionic systems
We present a treatment of many-body Fermionic systems that facilitates an
expression of the well-known quantities in a series expansion of the Planck's
constant. The ensuing semiclassical result contains to a leading order of the
response function the classical time correlation function of the observable
followed by the Weyl-Wigner series, on top of these terms are the
periodic-orbit correction terms. The treatment given here starts from linear
response assumption of the many-body theory and in its connection with
semiclassical theory, it makes no assumption of the integrability of classical
dynamics underlying the one-body quantal system. Applications of the framework
are also discussed.Comment: 18 pages, Te
Quark Imaging in the Proton Via Quantum Phase-Space Distributions
We develop the concept of quantum phase-space (Wigner) distributions for
quarks and gluons in the proton. To appreciate their physical content, we
analyze the contraints from special relativity on the interpretation of elastic
form factors, and examine the physics of the Feynman parton distributions in
the proton's rest frame. We relate the quark Wigner functions to the
transverse-momentum dependent parton distributions and generalized parton
distributions, emphasizing the physical role of the skewness parameter. We show
that the Wigner functions allow to visualize quantum quarks and gluons using
the language of the classical phase space. We present two examples of the quark
Wigner distributions and point out some model-independent features.Comment: 20 pages with 3 fiture
GRIPS - Gamma-Ray Imaging, Polarimetry and Spectroscopy
We propose to perform a continuously scanning all-sky survey from 200 keV to
80 MeV achieving a sensitivity which is better by a factor of 40 or more
compared to the previous missions in this energy range. The Gamma-Ray Imaging,
Polarimetry and Spectroscopy (GRIPS) mission addresses fundamental questions in
ESA's Cosmic Vision plan. Among the major themes of the strategic plan, GRIPS
has its focus on the evolving, violent Universe, exploring a unique energy
window. We propose to investigate -ray bursts and blazars, the
mechanisms behind supernova explosions, nucleosynthesis and spallation, the
enigmatic origin of positrons in our Galaxy, and the nature of radiation
processes and particle acceleration in extreme cosmic sources including pulsars
and magnetars. The natural energy scale for these non-thermal processes is of
the order of MeV. Although they can be partially and indirectly studied using
other methods, only the proposed GRIPS measurements will provide direct access
to their primary photons. GRIPS will be a driver for the study of transient
sources in the era of neutrino and gravitational wave observatories such as
IceCUBE and LISA, establishing a new type of diagnostics in relativistic and
nuclear astrophysics. This will support extrapolations to investigate star
formation, galaxy evolution, and black hole formation at high redshifts.Comment: to appear in Exp. Astron., special vol. on M3-Call of ESA's Cosmic
Vision 2010; 25 p., 25 figs; see also www.grips-mission.e
A distinct role for B1b lymphocytes in T cell-independent immunity
Pathogenesis of infectious disease is not only determined by the virulence of the microbe but also by the immune status of the host. Vaccination is the most effective means to control infectious diseases. A hallmark of the adaptive immune system is the generation of B cell memory, which provides a long-lasting protective antibody response that is central to the concept of vaccination. Recent studies revealed a distinct function for B1b lymphocytes, a minor subset of mature B cells that closely resembles that of memory B cells in a number of aspects. In contrast to the development of conventional B cell memory, which requires the formation of germinal centers and T cells, the development of B1b cell-mediated long-lasting antibody responses occurs independent of T cell help. T cell-independent (TI) antigens are important virulence factors expressed by a number of bacterial pathogens, including those associated with biological threats. TI antigens cannot be processed and presented to T cells and therefore are known to possess restricted T cell-dependent (TD) immunogenicity. Nevertheless, specific recognition of TI antigens by B1b cells and the highly protective antibody responses mounted by them clearly indicate a crucial role for this subset of B cells. Understanding the mechanisms of long-term immunity conferred by B1b cells may lead to improved vaccine efficacy for a variety of TI antigens
GWAS Meta-Analysis of Suicide Attempt: Identification of 12 Genome-Wide Significant Loci and Implication of Genetic Risks for Specific Health Factors
OBJECTIVE: Suicidal behavior is heritable and is a major cause of death worldwide. Two large-scale genome-wide association studies (GWASs) recently discovered and cross-validated genome-wide significant (GWS) loci for suicide attempt (SA). The present study leveraged the genetic cohorts from both studies to conduct the largest GWAS meta-analysis of SA to date. Multi-ancestry and admixture-specific meta-analyses were conducted within groups of significant African, East Asian, and European ancestry admixtures.
METHODS: This study comprised 22 cohorts, including 43,871 SA cases and 915,025 ancestry-matched controls. Analytical methods across multi-ancestry and individual ancestry admixtures included inverse variance-weighted fixed-effects meta-analyses, followed by gene, gene-set, tissue-set, and drug-target enrichment, as well as summary-data-based Mendelian randomization with brain expression quantitative trait loci data, phenome-wide genetic correlation, and genetic causal proportion analyses.
RESULTS: Multi-ancestry and European ancestry admixture GWAS meta-analyses identified 12 risk loci at p values \u3c5Ă10
CONCLUSIONS: This multi-ancestry analysis of suicide attempt identified several loci contributing to risk and establishes significant shared genetic covariation with clinical phenotypes. These findings provide insight into genetic factors associated with suicide attempt across ancestry admixture populations, in veteran and civilian populations, and in attempt versus death
- âŠ