7,995 research outputs found

    The Mpemba effect in spin glasses is a persistent memory effect

    Get PDF
    The Mpemba effect occurs when a hot system cools faster than an initially colder one, when both are refrigerated in the same thermal reservoir. Using the custom built supercomputer Janus II, we study the Mpemba effect in spin glasses and show that it is a non-equilibrium process, governed by the coherence length \xi of the system. The effect occurs when the bath temperature lies in the glassy phase, but it is not necessary for the thermal protocol to cross the critical temperature. In fact, the Mpemba effect follows from a strong relationship between the internal energy and \xi that turns out to be a sure-tell sign of being in the glassy phase. Thus, the Mpemba effect presents itself as an intriguing new avenue for the experimental study of the coherence length in supercooled liquids and other glass formers.Comment: Version accepted for publication in PNAS. 6 pages, 7 figure

    Study of secondary muons detected within the tunnels of the Cholula pyramid

    Get PDF
    The pyramid of Cholula was built at the beginning of 100 B.C. and during of period of 500 years it was finished, had several new constructions, based on the previous constructions. The primarily material of construction is the adobe. Early in 1931 archaeological excavations began with the intention of exploring the interior of the pyramid, excavations were stopped in 1971, and to date no further excavations have been carried out. This work shows the first measurements of muons, particles that are very penetrating, these are generated by primary cosmic rays that was incoming in the atmosphere and these generates a rain of secondary particles, among them the muons. To measure this kind of particles was implemented a detector system, it is formed by a scintillator plastic coupled to a tube photomultiplier; the signals were acquired by mean of an oscilloscope. The detector was collocated near of the center of the pyramid; the location belongs to the maxima concentration in mass over the detector. Graphs of the charge distribution, maximum amplitude and characteristic rise times of the generated pulses in a plastic scintillator are shown, this is scintillator was synthesized in the materials laboratory of the FCFM-BUAP. In addition the optical characterization of the same was realized

    Fracture model with variable range of interaction

    Full text link
    We introduce a fiber bundle model where the interaction among fibers is modeled by an adjustable stress-transfer function which can interpolate between the two limiting cases of load redistribution, the global and the local load sharing schemes. By varying the range of interaction several features of the model are numerically studied and a crossover from mean field to short range behavior is obtained. The properties of the two regimes and the emergence of the crossover in between are explored by numerically studying the dependence of the ultimate strength of the material on the system size, the distribution of avalanches of breakings, and of the cluster sizes of broken fibers. Finally, we analyze the moments of the cluster size distributions to accurately determine the value at which the crossover is observed.Comment: 8 pages, 8 figures. Two columns revtex format. Final version to be published in Phys. Rev.

    Helminth-induced arginase-1 exacerbates lung inflammation and disease severity in tuberculosis

    Get PDF
    Parasitic helminth worms, such as Schistosoma mansoni, are endemic in regions with a high prevalence of tuberculosis (TB) among the population. Human studies suggest that helminth coinfections contribute to increased TB susceptibility and increased rates of TB reactivation. Prevailing models suggest that T helper type 2 (Th2) responses induced by helminth infection impair Th1 immune responses and thereby limit Mycobacterium tuberculosis (Mtb) control. Using a pulmonary mouse model of Mtb infection, we demonstrated that S. mansoni coinfection or immunization with S. mansoni egg antigens can reversibly impair Mtb-specific T cell responses without affecting macrophage-mediated Mtb control. Instead, S. mansoni infection resulted in accumulation of high arginase-1–expressing macrophages in the lung, which formed type 2 granulomas and exacerbated inflammation in Mtb-infected mice. Treatment of coinfected animals with an antihelminthic improved Mtb-specific Th1 responses and reduced disease severity. In a genetically diverse mouse population infected with Mtb, enhanced arginase-1 activity was associated with increased lung inflammation. Moreover, in patients with pulmonary TB, lung damage correlated with increased serum activity of arginase-1, which was elevated in TB patients coinfected with helminths. Together, our data indicate that helminth coinfection induces arginase-1–expressing type 2 granulomas, thereby increasing inflammation and TB disease severity. These results also provide insight into the mechanisms by which helminth coinfections drive increased susceptibility, disease progression, and severity in TB

    Bursts in a fiber bundle model with continuous damage

    Full text link
    We study the constitutive behaviour, the damage process, and the properties of bursts in the continuous damage fiber bundle model introduced recently. Depending on its two parameters, the model provides various types of constitutive behaviours including also macroscopic plasticity. Analytic results are obtained to characterize the damage process along the plastic plateau under strain controlled loading, furthermore, for stress controlled experiments we develop a simulation technique and explore numerically the distribution of bursts of fiber breaks assuming infinite range of interaction. Simulations revealed that under certain conditions power law distribution of bursts arises with an exponent significantly different from the mean field exponent 5/2. A phase diagram of the model characterizing the possible burst distributions is constructed.Comment: 9 pages, 11 figures, APS style, submitted for publicatio

    The Sensitivity of HAWC to High-Mass Dark Matter Annihilations

    Full text link
    The High Altitude Water Cherenkov (HAWC) observatory is a wide field-of-view detector sensitive to gamma rays of 100 GeV to a few hundred TeV. Located in central Mexico at 19 degrees North latitude and 4100 m above sea level, HAWC will observe gamma rays and cosmic rays with an array of water Cherenkov detectors. The full HAWC array is scheduled to be operational in Spring 2015. In this paper, we study the HAWC sensitivity to the gamma-ray signatures of high-mass (multi- TeV) dark matter annihilation. The HAWC observatory will be sensitive to diverse searches for dark matter annihilation, including annihilation from extended dark matter sources, the diffuse gamma-ray emission from dark matter annihilation, and gamma-ray emission from non-luminous dark matter subhalos. Here we consider the HAWC sensitivity to a subset of these sources, including dwarf galaxies, the M31 galaxy, the Virgo cluster, and the Galactic center. We simulate the HAWC response to gamma rays from these sources in several well-motivated dark matter annihilation channels. If no gamma-ray excess is observed, we show the limits HAWC can place on the dark matter cross-section from these sources. In particular, in the case of dark matter annihilation into gauge bosons, HAWC will be able to detect a narrow range of dark matter masses to cross-sections below thermal. HAWC should also be sensitive to non-thermal cross-sections for masses up to nearly 1000 TeV. The constraints placed by HAWC on the dark matter cross-section from known sources should be competitive with current limits in the mass range where HAWC has similar sensitivity. HAWC can additionally explore higher dark matter masses than are currently constrained.Comment: 15 pages, 4 figures, version to be published in PR

    Aging rate of spin glasses from simulations matches experiments

    Get PDF
    Experiments on spin glasses can now make precise measurements of the exponent z(T)z(T) governing the growth of glassy domains, while our computational capabilities allow us to make quantitative predictions for experimental scales. However, experimental and numerical values for z(T)z(T) have differed. We use new simulations on the Janus II computer to resolve this discrepancy, finding a time-dependent z(T,tw)z(T, t_w), which leads to the experimental value through mild extrapolations. Furthermore, theoretical insight is gained by studying a crossover between the T=TcT = T_c and T=0T = 0 fixed points.Comment: Version accepted for publication in PRL. 12 pages, 9 figure

    VAMOS: a Pathfinder for the HAWC Gamma-Ray Observatory

    Full text link
    VAMOS was a prototype detector built in 2011 at an altitude of 4100m a.s.l. in the state of Puebla, Mexico. The aim of VAMOS was to finalize the design, construction techniques and data acquisition system of the HAWC observatory. HAWC is an air-shower array currently under construction at the same site of VAMOS with the purpose to study the TeV sky. The VAMOS setup included six water Cherenkov detectors and two different data acquisition systems. It was in operation between October 2011 and May 2012 with an average live time of 30%. Besides the scientific verification purposes, the eight months of data were used to obtain the results presented in this paper: the detector response to the Forbush decrease of March 2012, and the analysis of possible emission, at energies above 30 GeV, for long gamma-ray bursts GRB111016B and GRB120328B.Comment: Accepted for pubblication in Astroparticle Physics Journal (20 pages, 10 figures). Corresponding authors: A.Marinelli and D.Zaboro

    Front Matter

    Get PDF
    The carbohydrate Galα1-3Galβ1-(3)4GlcNAc-R (α-Gal) is produced in all mammals except for humans, apes and old world monkeys that lost the ability to synthetize this carbohydrate. Therefore, humans can produce high antibody titers against α-Gal. Anti-α-Gal IgE antibodies have been associated with tick-induced allergy (i.e. α-Gal syndrome) and anti-α-Gal IgG/IgM antibodies may be involved in protection against malaria, leishmaniasis and Chagas disease. The α-Gal on tick salivary proteins plays an important role in the etiology of the α-Gal syndrome. However, whether ticks are able to produce endogenous α-Gal remains currently unknown. In this study, the Ixodes scapularis genome was searched for galactosyltransferases and three genes were identified as potentially involved in the synthesis of α-Gal. Heterologous gene expression in α-Gal-negative cells and gene knockdown in ticks confirmed that these genes were involved in α-Gal synthesis and are essential for tick feeding. Furthermore, these genes were shown to play an important role in tick-pathogen interactions. Results suggested that tick cells increased α-Gal levels in response to Anaplasma phagocytophilum infection to control bacterial infection. These results provided the molecular basis of endogenous α-Gal production in ticks and suggested that tick galactosyltransferases are involved in vector development, tick-pathogen interactions and possibly the etiology of α-Gal syndrome in humans.This research was supported by the Consejería de Educación, Cultura y Deportes, JCCM, Spain, project CCM17-PIC-036 (SBPLY/17/180501/000185). JJV was supported by Project FIT (Pharmacology, Immunotherapy, nanoToxicology), funded by the European Regional Development Fund.Peer Reviewe
    corecore