1,204 research outputs found

    Isotope effects in the harmonic response from hydrogenlike muonic atoms in strong laser fields

    Full text link
    High-harmonic generation from hydrogenlike muonic atoms exposed to ultraintense high-frequency laser fields is calculated. Systems of low nuclear charge number Z are considered where a nonrelativistic description applies. By comparing the radiative response for different isotopes we demonstrate characteristic signatures of the finite nuclear mass and size in the harmonic spectra. In particular, for Z>1, an effective muon charge appears in the Schr\"odinger equation for the relative particle motion, which influences the position of the harmonic cutoff. Cutoff energies in the MeV domain can be achieved, offering prospects for the generation of ultrashort coherent gamma-ray pulses.Comment: 11 pages, 5 figure

    Pattern-Related Visual Stress, Chromaticity, and Accommodation

    Get PDF
    PURPOSE. To investigate the impact of colored overlays on the accommodative response of individuals, with and without pattern- related visual stress (PRVS), a condition in which individuals manifest symptoms of perceptual distortion and discomfort when viewing a 3-cyc/deg square-wave grating. METHODS. Under double-masked conditions, 11 individuals who reported PRVS selected an overlay with a color individually chosen to reduce perceptual distortion of text and maximize comfort (PRVS group). Two groups of control subjects individually matched for age, sex, and refractive error were recruited. Control group 1 similarly chose an overlay to maximize comfort. Control group 2 used the same overlays as the paired PRVS participant. The overlay improved reading speed by 10% (P < 0.001), but only in the PRVS group. A remote eccentric photorefractor was used to record accommodative lag while participants viewed a cross on a background. The background was uniform or contained a grating and was either gray or had a chromaticity identical with that of the chosen overlay. There were therefore four backgrounds in all. RESULTS. Overall, the accommodative lag was 0.44 D greater in the participants with PRVS. When the background had the chosen chromaticity, the accommodative lag was reduced by an average of 0.16 D (P = 0.03) in the PRVS group, but not in the symptom-free groups: in control group 2 the colored background slightly increased the accommodative lag. CONCLUSIONS. Accommodative lag was greater in individuals susceptible to pattern-related visual stress and was reduced by a colored background. © Association for Research in Vision and Ophthalmology

    Three-year outcomes of a once daily fractionation scheme for accelerated partial breast irradiation (APBI) using 3-D conformal radiotherapy (3D-CRT).

    Get PDF
    The aim of this study was to report 3-year outcomes of toxicity, cosmesis, and local control using a once daily fractionation scheme (49.95 Gy in 3.33 Gy once daily fractions) for accelerated partial breast irradiation (APBI) using three-dimensional conformal radiotherapy (3D-CRT). Between July 2008 and August 2010, women aged ≥40 years with ductal carcinoma in situ or node-negative invasive breast cancer ≤3 cm in diameter, treated with breast-conserving surgery achieving negative margins, were accrued to a prospective study. Women were treated with APBI using 3-5 photon beams, delivering 49.95 Gy over 15 once daily fractions over 3 weeks. Patients were assessed for toxicities, cosmesis, and local control rates before APBI and at specified time points. Thirty-four patients (mean age 60 years) with Tis 0 (n = 9) and T1N0 (n = 25) breast cancer were treated and followed up for an average of 39 months. Only 3% (1/34) patients experienced a grade 3 subcutaneous fibrosis and breast edema and 97% of the patients had good/excellent cosmetic outcome at 3 years. The 3-year rate of ipsilateral breast tumor recurrence (IBTR) was 0% while the rate of contralateral breast events was 6%. The 3-year disease-free survival (DFS), overall survival (OS), and breast cancer-specific survival (BCSS) was 94%, 100%, and 100%, respectively. Our novel accelerated partial breast fractionation scheme of 15 once daily fractions of 3.33 Gy (49.95 Gy total) is a remarkably well-tolerated regimen of 3D-CRT-based APBI. A larger cohort of patients is needed to further ascertain the toxicity of this accelerated partial breast regimen

    Synthesis and Surface Modification of Inorganic Nanoparticles for Application in Physics and Medicine

    Get PDF
    The core focus of this cumulative thesis is the synthesis, the characterization, and the polymer coating or the surface modification of different types of inorganic nanoparticles (NPs), e.g., semiconductor, magnetic, plasmonic, and titanium oxide NPs. These NPs are used in the field of physics, biotechnology, and in nanomedicine or life sciences for both diagnosis and therapy. The applications of these NPs depend on their unique properties, which are correlated to their size, shape, and the material composition. The colloidal stability of these nanocrystals or NPs in different media (e.g. organic, water, cell culture media) was achieved by means of capping agents or by wrapping suitable ligands or surfactants around the core of the NPs. The colloidal NPs that were synthesised during this research work were capped with hydrophobic ligands (e.g. oleic acid, oleylamine, etc.) to keep them stable in the organic media, e.g., toluene, chloroform, etc. The phase transfer from organic to aqueous is a mandatory step prior to their use in the few desired applications, especially when these NPs are exposed to aqueous medium or cell media. This is carried out by wrapping the NPs with an amphiphilic polymer, i.e., poly(isobutylene-alt-maleic anhydride) (Mw= 6000 Da) that is grafted with hydrophobic side chains of dodecylamine. The mentioned four types of produced NPs were: (i) Semiconductor NPs which include the hydrophobic cadmium sulfide (CdS) quantum dots (QDs) that are used: for organic scintillation neutrino detection experiments; for PPO (2, 5-diphenyloxazole) styrene based plastic scintillator detectors; for time resolved spectral measurement, and for fluorescence studies with different surface coatings; additionally, water soluble CdS, manganese doped CdS, and zinc sulphide (ZnS) with and without manganese doping were synthesized and engineered to run several experiments on nanomaterials’ (NMs) behavior in environmental media, e.g., river and lake water; (ii) magnetic NPs (MNPs) that include core only (iron oxide, e.g. magnetite) and core shell composite iron oxide magnetic NPs combined with cobalt and manganese ferrites; (iii) plasmonic NPs such as gold and silver NPs that were used in combination with iron-oxide NPs (4 nm each) for toxicity screening and dose determination assays, and (vi) titanium dioxide iv (TiO2) NPs with different sizes and shapes (i.e. cube, rods, plates, and bipyramids), which were used for in vivo experiments: To evaluate the bio-distribution, organ accumulation, biological barrier passage, and potential organ toxicity after a single intravenous administration of TiO2 NPs, and to assess the influence of the TiO2 NPs shape and geometry on the mentioned effects. Furthermore TiO2 NPs were also used to perform few more in vivo studies to investigate: (i) The effect of biological environment (e.g. lung lining liquid, saliva, gastric/intestinal fluids) on NPs’ behaviour and toxicity, using complex co-culture systems for the intestine and alveoli, (ii) the effect of NPs on the activation of the inflammasome, and (iii) the influence of NPs on the maturation and activation of dendritic cells. In addition to above mentioned experiments for synthesis and surface modification another study was carried out with the aim to transfer three different types of NPs (i.e. plasmonic, fluorescent and magnetic) in aqueous phase to be employed in hydrogels, aerogels, and heterogels applications. In this study bimetallic (gold-copper) plasmonic nanocubes, fluorescent (cadmium selenide/CdS) core shell nanorods and magnetic iron oxide (Fe3O4) nanospheres were successfully transferred to the aqueous phase irrespective of their different sizes ranging from 5-40 nm in at least one dimension. All water soluble NPs were cleaned by means of gel electrophoresis or by ultracentrifugation to get rid of micelles (empty polymer) followed by sterilization for all in vivo studies. The qualitative and quantitative analyses all of these NPs were performed by means of different characterization techniques, e.g., ultraviolet-visible spectroscopy, fluorescence spectroscopy, dynamic light scattering, zeta potential measurements gel electrophoresis, transmission electron microscopy, inductively coupled plasma mass spectrometry, and the X-ray diffraction analysis

    Development of a Taxonomy for Health Information Technology

    Get PDF
    Taxonomies provide schemas to help classify entities and define the relationships between them. Early computing enabled the development of ontologies and Medical Subject Headings (MeSH), the first modern classification of medical terminology as applied to medical literature. Later developments, such as MEDLINE, expanded MeSH to include a number of medical informatics terms. However, a lack of specificity in MeSH and other existing informatics taxonomies for terminology used to describe the growing field of health information technology (health IT) created the need for the development of a specialized taxonomy. Experts associated with the Agency for Healthcare Research and Qualitys (AHRQs) National Resource Center for Health Information Technology (NRC) created and evaluated a taxonomy for health IT, to enable users of a public health IT Web site to efficiently identify resources within an online, searchable repository

    Aircraft systems architecting: a functional-logical domain perspective

    Get PDF
    Presented is a novel framework for early systems architecture design. The framework defines data structures and algorithms that enable the systems architect to operate interactively and simultaneously in both the functional and logical domains. A prototype software tool, called AirCADia Architect, was implemented, which allowed the framework to be evaluated by practicing aircraft systems architects. The evaluation confirmed that, on the whole, the approach enables the architects to effectively express their creative ideas when synthesizing new architectures while still retaining control over the process

    Effectiveness of peer-delivered interventions for severe mental illness and depression on clinical and psychosocial outcomes: a systematic review and meta-analysis.

    Get PDF
    PURPOSE: To evaluate the effectiveness of peer-delivered interventions in improving clinical and psychosocial outcomes among individuals with severe mental illness (SMI) or depression. METHODS: Systematic review and meta-analysis of randomised controlled trials comparing a peer-delivered intervention to treatment as usual or treatment delivered by a health professional. Random effect meta-analyses were performed separately for SMI and depression interventions. RESULTS: Fourteen studies (10 SMI studies, 4 depression studies), all from high-income countries, met the inclusion criteria. For SMI, evidence from three high-quality superiority trials showed small positive effects favouring peer-delivered interventions for quality of life (SMD 0.24, 95 % CI 0.08-0.40, p = 0.003, I (2) = 0 %, n = 639) and hope (SMD 0.24, 95 % CI 0.02-0.46, p = 0.03, I (2) = 65 %, n = 967). Results of two SMI equivalence trials indicated that peers may be equivalent to health professionals in improving clinical symptoms (SMD -0.14, 95 % CI -0.57 to 0.29, p = 0.51, I (2) = 0 %, n = 84) and quality of life (SMD -0.11, 95 % CI -0.42 to 0.20, p = 0.56, I (2) = 0 %, n = 164). No effect of peer-delivered interventions for depression was observed on any outcome. CONCLUSIONS: The limited evidence base suggests that peers may have a small additional impact on patient's outcomes, in comparison to standard psychiatric care in high-income settings. Future research should explore the use and applicability of peer-delivered interventions in resource poor settings where standard care is likely to be of lower quality and coverage. The positive findings of equivalence trials demand further research in this area to consolidate the relative value of peer-delivered vs. professional-delivered interventions

    Investigating photoexcitation-induced mitochondrial damage by chemotherapeutic corroles using multimode optical imaging

    Get PDF
    We recently reported that a targeted, brightly fluorescent gallium corrole (HerGa) is highly effective for breast tumor detection and treatment. Unlike structurally similar porphryins, HerGa exhibits tumor-targeted toxicity without the need for photoexcitation. We have now examined whether photoexcitation further modulates HerGa toxicity, using multimode optical imaging of live cells, including two-photon excited fluorescence, differential interference contrast (DIC), spectral, and lifetime imaging. Using two-photon excited fluorescence imaging, we observed that light at specific wavelengths augments the HerGa-mediated mitochondrial membrane potential disruption of breast cancer cells in situ. In addition, DIC, spectral, and fluorescence lifetime imaging enabled us to both validate cell damage by HerGa photoexcitation and investigate HerGa internalization, thus allowing optimization of light dose and timing. Our demonstration of HerGa phototoxicity opens the way for development of new methods of cancer intervention using tumor-targeted corroles
    corecore