224 research outputs found

    Trapped ion mode in toroidally rotating plasmas

    Get PDF
    The influence of radially sheared toroidal flows on the Trapped Ion Mode (TIM) is investigated using a two-dimensional eigenmode code. These radially extended toroidal microinstabilities could significantly influence the interpretation of confinement scaling trends and associated fluctuation properties observed in recent tokamak experiments. In the present analysis, the electrostatic drift kinetic equation is obtained from the general nonlinear gyrokinetic equation in rotating plasmas. In the long perpendicular wavelength limit k{sub {tau}}{rho}{sub bi} {much_lt} 1, where {rho}{sub bi} is the average trapped-ion banana width, the resulting eigenmode equation becomes a coupled system of second order differential equations nmo for the poloidal harmonics. These equations are solved using finite element methods. Numerical results from the analysis of low and medium toroidal mode number instabilities are presented using representative TFTR L-mode input parameters. To illustrate the effects of mode coupling, a case is presented where the poloidal mode coupling is suppressed. The influence of toroidal rotation on a TFTR L-mode shot is also analyzed by including a beam species with considerable larger temperature. A discussion of the numerical results is presented

    Caries associated with orthodontic care part 2: management

    Get PDF
    It is recognized that wearing an orthodontic appliance increases the caries risk of the individual. The prevalence of demineralization has been reported to be as high as 73%. When demineralization occurs a number of treatments exist: fluoride application, acid microabrasion, casein phosphopeptide-amorphous calcium phosphate (CCP-ACP), resin infiltration and self-assembling peptides. Of these, topical fluoride has the most evidence to support its use. CPD/Clinical Relevance: Demineralization is the most common complication of orthodontic care. The clinician should understand how to manage this when it occurs

    Effect of silver nanoparticles on the physicochemical and antimicrobial properties of an orthodontic adhesive

    Get PDF
    ABSTRACT Orthodontic treatment with fixed brackets plays a major role on the formation of white spot lesions. Objective This study aimed to incorporate silver nanoparticle solutions (AgNP) in an orthodontic adhesive and evaluate its physicochemical and antimicrobial properties. Material and Methods Silver nanoparticle solutions were added to a commercial adhesive in different concentrations (w/w): 0%, 0.11%, 0.18%, and 0.33%. Shear bond strength (SBS) test was performed after bonding metal brackets to enamel. Raman spectroscopy was used to analyze in situ the degree of conversion (DC) of the adhesive layer. The surface free energy (SFE) was evaluated after the measurement of contact angles. Growth inhibition of Streptococcus mutans in liquid and solid media was determined by colony-forming unit count and inhibition halo, respectively. One-way ANOVA was performed for SBS, DC, SFE, and growth inhibition. Results The incorporation of AgNP solution decreased the SBS (p<0.001) and DC in situ (p<0.001) values. SFE decreased after addition of 0.18% and 0.33% AgNP. Growth inhibition of S. mutans in liquid media was obtained after silver addition (p<0.05). Conclusions The addition of AgNP solutions to Transbond&#8482; XT adhesive primer inhibited S. mutans growth. SBS, DC, and SFE values decreased after incorporation up to 0.33% AgNP solution without compromising the chemical and physical properties of the adhesive
    • 

    corecore