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Received: 16 July 2015 / Published online: 19 July 2016

� The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Cyclic pressure pulsing with nitrogen is studied

for hydraulically fractured wells in depleted reservoirs. A

compositional simulation model is constructed to represent

the hydraulic fractures through local-grid refinement. The

process is analyzed from both operational and reservoir/

hydraulic-fracture perspectives. Key sensitivity parameters

for the operational component are chosen as the injection

rate, lengths of injection and soaking periods and the

economic rate limit to shut-in the well. For the reservoir/

hydraulic fracturing components, reservoir permeability,

hydraulic fracture permeability, effective thickness and

half-length are used. These parameters are varied at five

levels. A full-factorial experimental design is utilized to

run 1250 cases. The study shows that within the ranges

studied, the gas-injection process is applied successfully

for a 20-year project period with net present values based

on the incremental recoveries greater than zero. It is

observed that the cycle rate limit, injection and soaking

periods must be optimized to maximize the efficiency. The

simulation results are used to develop a neural network

based proxy model that can be used as a screening tool for

the process. The proxy model is validated with blind-cases

with a correlation coefficient of 0.96.

Keywords Cyclic pressure pulsing � Nitrogen injection �
Hydraulically-fractured wells � Experimental design �
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1 Introduction

In low-permeability reservoirs, which are dissected by a

network of interconnected fractures, solution channels, and

vugs, water and gas flooding have been found to be inef-

fective secondary recovery methods (Raza 1971). The

injected fluid tends to the channel through the high-con-

ductivity network and bypass the low-permeability, oil-

bearing matrix. In this type of reservoirs, cyclic pressure

pulsing using different types of gases as an alternative

method to improve recovery has been found to be effective.

Injected gas can penetrate and diffuse through the low-

permeability matrix with the help of the large contact area,

which is created by fractures. High-permeability fractures

allow easy delivery of the injected gas and production of

oil. Well-to-well connectivity is not required as it is a

single-well process. The process is characterized by three

stages, which are also illustrated in Fig. 1:

(1) Injection period Gas is injected into the reservoir.

(2) Soaking period Gas diffuses from fractures into the

matrix.

(3) Production period The well is put on production. At

the beginning of production, gas may be produced at

high rates; however, as time passes by, it will

decrease. Production may continue until the eco-

nomic limit is reached, and if necessary, another

cycle can be initiated.

Since the 1960s a number of studies have been pub-

lished on cyclic-pressure pulsing. Initial applications were
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with water as an improved way of waterflooding (Owens

and Archer 1966; Felsenthal and Ferrell 1967; Raza 1971).

Shelton and Morris (1973) used rich hydrocarbon gases

instead of steam to increase the reservoir energy (as a

short-term benefit) and reduce oil viscosity (as a long-term

benefit). Moreover, they found that soaking mainly affects

the peak production rate after injection. Later, cyclic

injection of carbon dioxide was utilized for heavy oil in

California (Sankur and Emanuel 1983), Arkansas (Khatib

et al. 1981), and Turkey (Bardon et al. 1986), and for light

and medium types of oil in Kentucky (Bardon et al. 1994),

Texas (Haskin and Alston 1989), and Louisiana (Monger

and Coma 1988). In the 1990s and 2000s, nitrogen and

mixtures with nitrogen were proposed and successfully

applied (Shayegi et al. 1996; Miller and Gaudin 2000).

Artun et al. (2010, 2011a, b, 2012) performed detailed

parametric studies of the process by analyzing a large set of

reservoir simulation runs and developed proxy models to

be used for screening and optimization of cyclic pressure

pulsing with nitrogen and carbon dioxide in naturally

fractured reservoirs. These studies showed that cyclic

pressure pulsing can be an effective enhanced oil recovery

method in naturally fractured reservoirs. Nitrogen has

several advantages over carbon dioxide and other types of

gases because of being inert, non-corrosive, environmen-

tally friendly and cost effective (Miller and Gaudin 2000).

In fractured systems, the primary mechanism that con-

tributes to the displacement of oil is the gas diffusion

through the surface of the fracture network. While naturally

fractured reservoirs provide an extensive surface area for

diffusion, hydraulic fractures can help to achieve a similar

mechanism to some extent. In recent studies, it was shown

that the cyclic pressure pulsing with water, nitrogen and

carbon dioxide (Gamadi et al. 2014; Sheng and Chen 2014;

Sheng 2015) can be an effective method to improve

recovery in shale oil and liquid-rich shale reservoirs which

benefit from an extensive network of hydraulic and natural

fractures.

There are many hydraulically fractured wells in the

world, and some of these wells are producing depleted

reservoirs with very low production rates. Oil fields of the

Appalachian Basin in the North-East USA can be given as
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Fig. 1 Overview of the cyclic-pressure-pulsing process and its resulting impact on the produced oil-flow rate
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examples with majority of the wells being hydraulically

fractured and reservoir pressures at depleted levels. This

makes most of the wells in the region classified as stripper

wells, producing at marginal oil rates (typically less than

10 barrels per day). Such reservoir conditions require

enhanced oil recovery methods to increase the production

rate while low profit margins make it difficult to justify

conventional flooding-type enhanced oil recovery methods.

In this study, we propose that the cyclic pressure pulsing

with nitrogen as a promising enhanced oil recovery method

that can benefit from the existing hydraulic fractures in the

well even though there is not an existing natural-fracture

network. In addition, low-cost requirements of nitrogen

generated from a membrane unit would help the process to

be attractive from a feasibility point of view. The primary

objectives of the study are understanding the following: (1)

Applicability of cyclic pressure pulsing with nitrogen in

hydraulically fractured wells in the Appalachian Basin-like

reservoirs and others; and (2) Impact of various reservoir

and operational parameters on the process efficiency.

To achieve the objectives, the workflow shown in Fig. 2

is followed which starts with a representative reservoir

model. The investigation is accomplished using a compo-

sitional numerical reservoir model, which is characterized

with representative properties of Appalachian Basin sand-

stones and Mid-Continent crude oil composition. Then,

through a systematic experimental-design procedure, cer-

tain reservoir and operational parameters are varied. By

collecting results and analyzing a critical performance

indicator from the simulation outputs, impacts of those

parameters are analyzed. The final step is to construct a

proxy model that can be used for screening purposes to

assess the applicability in cases which were not necessarily

studied using the numerical model.

2 Methodology

2.1 Reservoir simulation model

A single-well, compositional, single porosity reservoir with

a Cartesian gridblock system is constructed using a com-

mercial simulator (CMG 2013). To represent the compo-

nent-mass flow from fractures into the matrix caused by

compositional gradients, the molecular diffusion option for

nitrogen (CMG 2013), which is a critical factor during the

soaking period of cyclic pressure pulsing process, is

activated. Sigmund correlation for molecular diffusion

(Sigmund 1976) is used with a diffusion coefficient for

nitrogen of 0.001 cm2/s, which is taken from the literature

(Silva and Belery 1989) and validated with the Chapman-

Enskog binary-diffusion theory (Marrero and Mason 1972).

The square-shaped model consists of 961 gridblocks and

it has only one layer (31 blocks in the x and y directions, 1

block in the z direction). There is a production/injection

well at the center of the model. For the production well, the

minimum bottom hole pressure is specified as 14.7 psia

since the study focuses on fully or nearly depleted reser-

voirs with an average reservoir pressure of 50 psia. Injec-

tion constraints are defined as design parameters of the

cyclic pressure pulsing process and varied during the study

as explained in Sect. 2.2. The reservoir model is mainly

characterized with properties from the Appalachian Basin

sandstones (Duda et al. 1967; Boswell et al. 1993) that are

shown in Table 1. Parameters that define the reservoir

volume and initial conditions are kept constant, since the

primary objective is to study the effects of other parameters

that affect the flow dynamics such as the reservoir per-

meability and the hydraulic fracture characteristics.

The oil composition used is the Mid-Continent crude oil

of 368API gravity (Abboud 2005) and it is shown in

Table 2. Figure 3 shows the phase envelope of the oil

mixture around the wellbore after injecting nitrogen into

the Mid-Continent crude oil (Farias and Watson 2007).

During the operating range of this study, (70 �F and

50–500 psia) the reservoir hydrocarbon-mixture is 100 %

in a liquid phase. Therefore, there is not any free gas other

than the injected gas. Relative permeability curves for oil–

water and gas–oil systems are shown in Fig. 4, which are

taken from the commercial simulator used (CMG 2013),

Reservoir 
modeling

Experimental
design

Performance
analysis Screening

Fig. 2 The workflow followed to achieve the objectives of this study

Table 1 Reservoir characteristics of the Appalachian Basin sand-

stones and its single-well homogeneous reservoir model

Property Value

Porosity 0.1

Thickness, ft 50

Initial pressure, psia 50

Drainage area, acres 220

Water saturation 0.5

Gas saturation 0

Oil saturation 0.5

Original oil in place, MMSTB 4.14

Reservoir permeabilitya, mD 1

Fracture permeabilitya, mD 5,000

Fracture half-lengtha, ft 550

Fracture widtha, ft 0.1

a Parameters those were changed during different parts of the study
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with the end-point saturations being consistent with

Appalachian Basin characteristics (Boswell et al. 1993).

Here krw and krow are the relative permeability to water and

oil, respectively, for the water–oil system; krg and krog are

the relative permeability to gas and oil, respectively, for the

gas–oil system. The production/injection well is hydrauli-

cally fractured, and the hydraulic fracture is represented as

a high-permeability streak with a local-grid refinement to

be able to capture the flow dynamics at the matrix-fracture

interface (Fig. 5). A representative gas-saturation distri-

bution during injection, after injection and after soaking

around the hydraulic fracture is also seen in Fig. 5.

2.2 Experimental design

To design the simulation cases to run, an experimental

design procedure is utilized which consists of selecting the

parameters to be varied and selecting their ranges and

levels. As a result, the parameters shown in Table 3 are

selected which are divided into two groups as operational

parameters and reservoir properties. Ranges of these

parameters are selected with the objective of having rea-

sonable uncertainties in each parameter. Hydraulic fracture

parameters define the overall effectiveness of the fracture-

system to represent possible natural fractures around the

wellbore that may contribute to the overall surface area for

gas diffusion. It was decided to have five levels of variation

in each variable. Normally, if the number of factors

becomes moderately large, the number of runs may become

unmanageable especially with the full-factorial design

(Kelton and Barton 2003). However, in this case, a full-

factorial design was found to be achievable considering the

CPU time of a single run, which is a function of the size

and complexity of the reservoir model. Considering four

variables and five levels, the total number of runs using a
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Fig. 3 Phase envelope of the oil mixture around the wellbore after

injecting N2 into the Mid-Continent crude oil defined in the model

(Farias and Watson 2007)

Table 2 Mid-Continent crude oil composition with an API gravity of

36� (after Abboud 2005)

Component N2 C1 C2 C3 i-C4 i-C5 C6 C7?

Molar fraction 0.1 0.2 1.1 5.5 9.6 14.9 5.8 62.8
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Fig. 4 Relative permeability curves used in the model
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full-factorial design would be equal to 625 (54). Therefore,

for both components of the study (operational and reser-

voir), the total number of simulation runs required is 1250.

As can be seen in Table 3, when the operational parameters

are studied, reservoir and hydraulic fracture parameters are

kept constant, and vice versa.

2.3 Performance assessment

Using the simulation model, the process performance is

analyzed. The incremental oil production and the injected

volume of gas are both incorporated into the assessment.

The incremental production represents the additional oil

produced on top of the base cumulative production that

would have been achieved without the injection process

(Prats 1982). The incremental oil produced (Npin) during

year n in STB is calculated as:

Npin ¼ Npcn � Npbn ð1Þ

where Npcn is the cumulative recovery during year n when

cyclic injection is utilized (subscript c stands for cyclic

injection), STB; Npbn is the cumulative recovery during

year n when cyclic injection is not utilized (subscript b

stands for base), STB. To represent the overall process

performance, the discounted cyclic nitrogen injection effi-

ciency is calculated by incorporating:

• Income generated from cumulative values of incre-

mental oil produced,

• Costs due to nitrogen generation and injection,

• Time value of money through a discounting factor, i.

The present value of the incremental oil produced for

20 years of project time can be calculated from:

Npi0 ¼
X20

n¼1

Npin

ð1þ iÞn ð2Þ

The present value of the cumulative volume of nitrogen

injected can be calculated from:

Gi0 ¼
X20

n¼1

Gin

ð1þ iÞn ð3Þ

where Gi is the cumulative volume of nitrogen injected

during year n; i is the interest rate (taken as 10 %, yearly,
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Fig. 5 Gas saturation during injection, after injection, and after soaking

Table 3 Parameters used with

their ranges and levels as

utilized in the experimental

design procedure

Levels Operational parameters Reservoir/hydraulic fracture parameters

1 2 3 4 5 1 2 3 4 5

Injection rate, MCF/day 40 80 120 160 200 120

Injection period, day 10 25 50 75 100 50

Soaking period, day 10 25 50 75 100 50

Cycle rate limit, STB/day 1.0 2.0 3.0 4.0 5.0 3.0

Reservoir permeability, mD 1 0.1 1 10 50 100

Fracture permeability, mD 5000 1000 2500 5000 7500 10000

Fracture half length, ft 550 150 350 550 750 1050

Fracture width, ft 0.1 0.01 0.05 0.1 0.25 0.5
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in this study), and n is the number of years (ranging

between 1 and 20, for 20 years of project time). The per-

formance indicator, discounted cyclic nitrogen-injection

efficiency (in STB/MCF), is defined as:

Ec ¼
Npi0

Gi0

ð4Þ

which states the incremental volume of oil produced per

MCF of gas injected. The economic efficiency can be

calculated from:

Ece ¼ Ec �
Po

PN2

ð5Þ

where Po is the oil price; PN2
is the nitrogen price.

Assuming all other economic parameters are constant,

this ratio can be used to identify if the project is feasible or

not. Nitrogen generation cost is taken as $1/MCF of

nitrogen for generating nitrogen from a polymeric mem-

brane unit (Miller and Gaudin 2000; Artun et al. 2011a).

Because the values are discounted, the numerator is rep-

resentative of the time-zero value of additional income

generated from the incremental oil production, and the

denominator is the time-zero value of the cost associated

with nitrogen generation and injection:

If Ece [ 1 then the net present value NPV [ 0 ð6Þ
If Ece\1 then NPV\ 0 ð7Þ

This efficiency parameter is not a substitute for a

detailed economic analysis, but an indication and a quick

estimation of whether the nitrogen generation/injection

cost would be justified by the incremental oil produced.

Therefore, it only includes the parameters that change from

one case to another (i.e., how much money is spent on

generating and injecting nitrogen, how much additional

money is earned due to additional oil production). Since

the same well is used for both injection and production, it is

assumed that other operational costs, labor and expenses

are not going to change during injection and production.

2.4 Development of a screening tool

This part of the study is aimed to develop a screening tool,

to assess the performance of the cyclic nitrogen injection in

a hydraulically fractured well in a computationally efficient

manner. Intelligent systems have been applied to many

different types of optimization problems in the petroleum

industry. Most of these problems presented in the literature

are based on the development of artificial neural network

(ANN) based proxy models that can accurately mimic

reservoir models within a reasonable amount of accuracy

and computational efficiency. Artificial neural networks

(ANN) are very powerful in extracting non-linear and

complex relationships between input and output patterns.

Several areas of application included reservoir characteri-

zation (Artun and Mohaghegh 2011; Raeesi et al. 2012;

Alizadeh et al. 2012; Artun 2016), candidate well selection

for hydraulic fracturing treatments (Mohaghegh et al.

1996), field development (Centilmen et al. 1999; Dor-

aisamy et al. 2000; Mohaghegh et al. 1996), well-place-

ment and trajectory optimization (Johnson and Rogers

2011, Guyaguler 2002; Yeten et al. 2003), scheduling of

cyclic steam injection processes (Patel et al. 2005),

screening and optimization of secondary/enhanced oil

recovery (Ayala and Ertekin 2005; Artun et al.

2010, 2011b, 2012; Parada and Ertekin 2012; Amirian et al.

2013), history matching (Cullick et al. 2006; Silva et al.

2007; Zhao et al. 2015), underground-gas-storage man-

agement (Zangl et al. 2006), reservoir monitoring and

management (Zhao et al. 2015; Mohaghegh et al. 2014),

and modeling of shale-gas reservoirs (Kalantari-Dhaghi

et al. 2015; Esmaili and Mohaghegh 2015).

In this study, the backpropagation algorithm is used to

train the neural network. The backpropagation algorithm is

a gradient-descent method that minimizes the error during

the training process. A given set of inputs is mapped into a

set of given outputs which classifies this training algorithm

as a supervised training algorithm (Fausett 1994). The

training process includes 3 stages:

(1) Feed-forward of the input training pattern,

(2) Calculation and back-propagation of the error,

(3) Adjustment of weights.

In Fig. 6, a fully-connected neural network with one

hidden layer is shown. Number of input, hidden, and output

neurons are n, p, and m, respectively. The number of inputs

and outputs depend on the problem studied and the

objective of the developed neural network, which both

require knowledge of the subject-matter. The number of

hidden neurons and hidden layers are determined as a part

of the design process carried out for the neural network.

Although there is not a straight-forward recipe for deter-

mining the number of hidden layers and neurons, they

typically depend on the complexity of the problem as

defined by the number of parameters and training patterns

involved. There are a number of rules of thumb presented

in the literature to determine the number of hidden neurons,

and one of them is the following (Neuroshell 1998):

p ¼ nþ m

2
þ

ffiffiffiffiffiffiffiffi
NTP

p
ð8Þ

where NTP is the number of training patterns. It should be

noted that this equation was developed mostly based on

experience and should not be assumed to provide the cor-

rect number of hidden neurons for a given problem.

However, it can be used as a good start for the optimization
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process. A step-by-step explanation of the backpropagation

algorithm is shown below and more details about the terms

involved can be found in any book on artificial neural

networks such as (Fausett 1994):

The inner iterative loop shown in this algorithm is

repeated for all training cases included in the training set.

When all training cases are processed once, one epoch is

completed. After each training iteration, the average mean-

squared error is calculated and iterations continue until the

stopping criteria is satisfied. Most common stopping cri-

teria include achieving the minimum mean-squared error or

maximum number of epochs. After training is completed,

the weights on connection links achieve their optimum

states. If the training performance is satisfactory, and if the

model is validated with realistic, representative cases, then

the trained network can be used as a predictive model. In
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Fig. 6 Architecture of a multilayer network (after Artun 2016)

initialize weights (small random values)
while stopping condition is false do

for each training pair do
Feedforward stage:
- each input unit receives signal, and broadcasts it to all units in the layer above (hidden
units)
- each hidden unit sums its weighted input signals, applies its activation function to
calculate its output, and sends this signal to all units in the layer above (output layer)
- each output unit sums its weighted input signals, and applies its activation function
to calculate its output
Error backpropagation stage:
for both hidden units and output units do

compute: error, and error information term
compute: weight correction term

end for
Weight adjustment stage:
update weights and biases

end for
test for stopping condition

end while
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this study, mapping input–output relationships is achieved

with the inputs of operational and reservoir/hydraulic

fracture characteristics, and the output of the cyclic nitro-

gen injection efficiency.

After running all cases and collecting corresponding

performance indicators using the numerical model, a

knowledge base is obtained. This knowledge base is then

fed into an ANN, which has characteristics that have

been pre-determined, for training. Once being trained and

validated it is expected that the ANN-based proxy model

can provide responses within comparable accuracy to a

numerical model. Such kind of a model can be used as a

screening tool for the cyclic pressure pulsing process

with nitrogen, for cases that have not been necessarily

run using the numerical model. This workflow is sum-

marized in Fig. 7. In this study, the input parameters are

the operational and reservoir/hydraulic fracture parame-

ters as shown in Table 3, and the critical performance

indicator is the discounted cyclic-nitrogen-injection effi-

ciency, Ec. defined in Eq. (4).

3 Results and discussion

3.1 Analysis of operational parameters

In this part of the study, the reservoir parameters are kept

constant as shown in Table 3. Matrix permeability of 1 mD

is representative of sandstone reservoirs of the Appalachian

Basin. Hydraulic fracture properties are the mid-levels of

the levels used in the 2nd part of the study.

3.1.1 An overview of results

Minimum and maximum efficiencies obtained among all

cases are shown in Table 4. It is observed that in all cases

50 100 50 12
100 25 100 6
75 75 25 3

150 50 75 9

100 25 25 12

1 10000 8
2 12000 15
3 7500 12
4 9000 10

1000 18000 9

vs
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within the ranges of the study

4. Design an artificial neural network and train the neural 
network by feeding the knowledge base as the training 
data.

5. Validate the generalization capabilities of the trained 
neural network by testing with representative blind cases.

6. Use the trained neural network as a ANN-based proxy 
model for screening purposes.

3. Collect the corresponding performance indicators in a 
knowledge base.

2. Construct a representative numerical reservoir model 
for the problem studied, and run the model for each case 
defined in Step 1.

Injection rate,
MCF/d

Injection period,
d

Soaking period, 
d

Production period,
months

Design
scenario

Cumulative oil 
produced, STB

Peak oil rate,
STB/d

Fig. 7 Workflow for constructing an ANN-based proxy model that can be used as a screening tool (after Artun et al. 2012)
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the efficiency is greater than 0. This means that discounted

oil production with nitrogen injection is always greater

than cases without injection, which resulted in an incre-

mental production of greater than zero. Since the cost of

nitrogen generation is $1/MCF, the minimum efficiency of

0.9 STB/MCF indicates that the economic efficiency would

be greater than 1 as long as the oil price is greater than

$1.1/STB. Therefore, for almost any realistic oil price

scenario, the 20-year cyclic nitrogen injection project

would be feasible within the operational ranges studied.

3.1.2 Analysis of top 100 cases

Cases with the highest 100 efficiencies are analyzed to

develop an understanding of ranges of variables that are

favorable. Histograms that show the number of occurrences

for all variables are plotted. Histograms for injection rate

and period for top 100 discounted cyclic nitrogen injection

efficiencies are shown in Fig. 8a, b. Results show that most

of the top cases (87 %) have a nitrogen injection rate less

than or equal to 120 MCF/day and 93 % of cases have an

injection period of less than or equal to 25 days. The

injected volume of nitrogen can be calculated by multi-

plying injection rate and time. Figure 8c shows the his-

togram of injection volume for top 100 discounted

efficiencies. It is seen that 99 % of the cases have injection

volumes less than 2000 MCF per cycle. These results

indicate that nitrogen injection should be kept at the lower

ranges that are studied. This may be due to the blockage of

flow paths into the hydraulic fractures when higher vol-

umes are injected and relative permeability effects. On the

contrary, in the case of naturally fractured reservoirs, there

is an interconnected network of fractures that enables

easier flow of both gas and oil and higher volumes of gas

contributes to higher oil recovery (Artun et al. 2011a).

Longer injection periods may affect the process negatively

because of dissipation of pressure with time. Therefore,

these results show that it is critical to optimize the injection

rate, period and volume. Figure 8d shows the histogram of

soaking period for the top 100 cases. It is observed that for

72 % of the cases, the soaking period is greater than or

equal to 50 days. Therefore, longer soaking periods favor

the efficiency of the process. It is known from earlier

studies that the typical soaking period needed for naturally

fractured reservoirs is around 2–4 weeks. Therefore, a

much longer time is necessary for a hydraulically fractured

well than a naturally fractured system. This is due to the

smaller contact area for the gas diffusion in a hydraulically

fractured well, when there is not a naturally fractured

system that has an extensive contact area for the injected

gas. Figure 8e shows the histogram of cycle rate limit for

the top 100 cases. It is seen that 96 % of the cases realized

with 2 STB/day of economic limit or more to stop the

production and start the injection. The case that there are

only 4 cases with 1 STB/day highlights the necessity of

existing reservoir energy for the process to be successful.

While there is not a clear indication of the optimum rate to

stop the production between 2 and 5 STB/day, the potential

risk of losing production time should be noted for higher

rates. Amount of production lost by stopping early may not

be compensated by the additional production due to

injection. Figure 8f shows the total production shut-in time

(injection and soaking periods). In this histogram, the

maximum number of occurrences is when the time is

between 50 and 100 days and less optimum results when

the time is less than 50 days and greater than 100 days.

This shows that there must be sufficient time of injection

and soaking to maximize the process efficiency. However,

when the time is too long, the process is clearly affected

negatively with no cases above 150 days of shut-in time.

This is due to dissipation of the pressure increase by

injection at longer periods of time. This highlights another

important parameter, the total duration of shut-in, for

optimization.

3.1.3 Analysis of all cases

For further analysis, all cases are analyzed by taking the

arithmetic average of all levels for each parameter and

generating a 2-dimensional table of the averaged values.

Figure 9 shows these values with respect to cycle rate limit

and injection volume. The results indicate a lower range of

injection volumes per cycle is more favorable for the

efficiency of the process. This is probably due to the fact

that lost production time is not compensated by the incre-

mental oil produced. The low-permeability nature of the

reservoir system does not allow gas to be transported into

further portions of the reservoir, and therefore fails to

displace more volume of oil from the matrix system. When

we analyze the cycle rate limit, it is observed that rates

higher than or equal to 2 STB/day are favorable. This

indicates that existing reservoir energy in the system is

Table 4 Minimum and maximum discounted efficiencies obtained when the operational parameters are varied

Injection rate, MCF/day Injection period, day Soaking period, day Cycle rate limit, STB/day Efficiency, STB/MCF

Min. 200 100 50 5.0 0.9

Max. 40 10 75 5.0 14.4
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critical for the efficiency. Therefore, while the existing

energy is critical, shutting in the well for long times when

the well is still producing at reasonable rates is not a good

practice. This is seen with the wide-range of the low-effi-

ciency area when the limit is 5 STB. However, it should be

noted that the best performers are with minimum injection

volume and maximum cycle rate limit (400 MCF, and 5

STB/day). In Fig. 10, the efficiency values are mapped

with respect to soaking and injection period lengths. The

same observations with the top 100 cases also hold in this

case. A soaking period is required and longer soaking

periods improve the efficiency almost up to 28 % for 10

day of injection period. When the injection period is 100

days, since most of soaking already realized during the

injection period itself, the improvement is very small (only

12 %).

3.2 Analysis of reservoir/hydraulic fracture

parameters

In this part of the study, the operational parameters are kept

constant and reservoir and hydraulic fracture properties are

varied. The injection rate is 120 MCF/day, injection and

soaking periods are 50 days, and the economic rate limit

for oil production is 3 STB/day.

3.2.1 An overview of results

Minimum and maximum efficiencies obtained among all

cases are shown in Table 5. It is observed that in all cases

the efficiency is greater than 0. This means that discounted

oil production with nitrogen injection is always greater

than cases without gas injection. Since the cost of nitrogen

generation/injection is $1/MCF, the minimum efficiency of

0.4 STB/MCF indicates that economic efficiency would be

greater than one as long as the oil price is greater than

$2.50/STB. Therefore, for almost any realistic oil price

scenario, the 20-year cyclic nitrogen injection project will

generate a net present value greater than zero within the

operational ranges studied.

3.2.2 Analysis of top 100 cases

Cases with highest 100 efficiencies are analyzed to develop

an understanding of ranges of variables that are favorable.

Histograms that show the number of occurrences for all

variables are plotted. Histograms for matrix permeability,

fracture permeability, fracture width, and half-length are

shown in Fig. 11. These results indicate that matrix

bFig. 8 Histogram of operational parameters for top 100 runs in terms

of the process efficiency

1 2 3 4 5 Average

400 3.8 5.2 4.9 8.4 11.9 6.8

800 3.3 4.5 4.3 5.0 7.9 5.0

1000 3.1 5.0 3.7 6.3 7.7 5.2

1200 2.9 4.2 4.2 3.9 5.9 4.2

1600 2.8 3.9 3.4 3.0 5.0 3.6

2000 2.7 3.8 3.1 2.7 3.9 3.2

3000 2.8 3.5 3.0 2.5 2.4 2.8

4000 2.6 3.0 2.6 2.2 2.1 2.5

5000 2.4 2.7 2.6 2.2 1.8 2.3

6000 2.1 2.3 2.2 1.9 1.7 2.1

8000 1.7 2.1 1.9 1.6 1.4 1.7

9000 1.7 2.1 1.8 1.5 1.3 1.7

10000 1.6 2.0 1.7 1.5 1.2 1.6

12000 1.4 1.7 1.5 1.4 1.2 1.4

15000 1.3 1.5 1.4 1.3 1.1 1.3

16000 1.2 1.5 1.4 1.2 1.0 1.3

20000 1.1 1.2 1.2 1.1 1.0 1.1

Average 2.3 2.9 2.6 2.6 3.1

Ec

Cycle rate limit, STB/day
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Fig. 9 Average values of efficiencies of all cases with respect to the cycle rate limit and injection volume
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permeability is very critical such that range of permeability

between 10 and 100 mD constitutes 98 % of the cases.

While higher fracture permeabilities are favorable, their

impact is not as large as the matrix permeability. This is

probably due to the permeability difference between the

fracture and the matrix and its contribution to the diffusion

process. The reason that there is not an observable differ-

ence between 10, 50 and 100 mD, is due to the high-base

recovery of high permeability reservoirs. Since the base

recoveries are high, the amount of incremental recovery

that could be achieved with injection is also reduced.

Effective fracture width values greater than 0.01 ft (be-

tween 0.05 and 0.5 ft) are favorable, while 80 % of cases

are 0.25 ft or more. For the fracture half-length, we would

expect that longer fractures would provide better efficiency

because of the greater surface area for gas diffusion. The

results indicate that 85 % of the cases are with half-lengths

of 550 or 1050 ft.

3.2.3 Analysis of all cases

Figure 12 shows average efficiency values with respect to

matrix and fracture permeabilities. A similar observation

with the top 100 cases is the fact that matrix permeabilities

of 10 mD and higher result in higher efficiencies. It is also

observed that the efficiency is not a strong function of

fracture permeability but an effective fracture permeability

of 10,000 mD can increase the efficiency by 25 % when

compared with 1000 mD. This indicates that as long as

there is a fracture, the diffusion process helps to displace

the oil in the matrix. For higher matrix permeabilities of 50

and 100 mD, the base recovery is high and the efficiency

does not change significantly from 1 or 10 mD reservoirs.

A tight-reservoir permeability of 0.1 mD is also less

effective than that of a permeability of 1–10 mD. This

indicates that the Appalachian Basin sandstones would be

good candidates for cyclic nitrogen injection. Figure 13 is a

similar plot with the effective fracture width and fracture

half length. As long as the fracture width is greater than

0.01 ft, and fracture half-length is greater than 150 ft, the

process efficiency appears to be more favorable. This is due

to the increased surface area for diffusion with an effective

hydraulic fracture. Results indicated that with the same

operational parameters, hydraulic fracture effectiveness

can double the efficiency.

3.3 Screening tool

An ANN with an architecture shown in Fig. 14 is con-

structed. In this neural network, there are 12 input

parameters, with six of them represent operational param-

eters, and remaining six parameters represent reservoir and

hydraulic fracture parameters. In addition to the base

parameters determined in the previous stages of the study,

4 additional parameters are added which are functions of

the base parameters to help represent the problem in an

improved way. These include:

10 25 50 75 100 Average

10 3.7 2.8 2.0 1.8 1.5 2.4

25 4.3 3.1 2.2 1.9 1.6 2.6

50 4.9 3.3 2.3 1.9 1.6 2.8

75 4.9 3.5 2.3 1.9 1.6 2.8

100 5.1 3.4 2.4 1.9 1.7 2.9

Average 4.6 3.2 2.2 1.9 1.6

Injection period, day
S

oa
ki

ng
 p

er
io

d,
 d

ay

28 % higher efficiency with soaking
for 100 days than soaking for 10 days

Dissipation of pressure with long
injection time (too late for soaking)

Ec

Fig. 10 Average values of efficiencies of all cases with respect to soaking and injection periods

Table 5 Minimum and maximum discounted efficiencies obtained when reservoir/hydraulic-fracture parameters are varied

Matrix permeability, mD Fracture permeability, mD Fracture width, ft Fracture half-length, ft Efficiency, STB/MCF

Min. 0.1 7500 0.05 150 0.4

Max. 10 10,000 0.5 750 3.2
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(1) ti ? ts: summation of injection and soaking periods

to account for the total amount of time in each cycle

during which the well is not on production,

(2) Gi: multiplication of injection period with injection

rate to account for the volume of gas injected in each

cycle,

(3) Af: multiplication of fracture length with fracture

width to account for the effective size of the fracture,

(4) kf/km: ratio of fracture permeability to the matrix

permeability to account for the contrast between

matrix and fracture permeabilities.

The only output is the discounted cyclic-injection effi-

ciency, Ec. Considering the size of the problem (1250

patterns, 12 inputs and 1 output), a single-hidden-layer

network with 50 neurons is constructed (Fig. 14).

A Levenberg–Marquardt backpropagation algorithm is

used for training (MATLAB 2013a), with a hyperbolic

tangent sigmoid transfer function between input-hidden

layers, and a linear transfer function between hidden and

output layers. Among 1250 patterns 70 % of the dataset is

used for training (874 cases), 15 % (188 cases) is used for

validation during training to prevent over-training prob-

lems, and remaining 15 % (188 cases) used for blind-

testing purposes to test the generalization capabilities of the

trained neural network. The full set of characteristics of the

neural network is shown in Table 6.

The training is terminated after 200 validation checks

without improvement after 213 epochs. The training error

was 0.5 %. The trained neural network is applied to the

whole data set, and to the training, validation, and testing sets

separately. Figure 15 shows the cross-plots of results

obtained from the numerical model and the ANN-proxy

model. These comparisons indicate the proxy model has

high-accuracy prediction capability, with a correlation
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Fig. 11 Histogram of reservoir parameters for top 100 runs in terms of the process efficiency
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coefficient of 0.96 for the testing set, which is the set that was

not shown during training. In Fig. 16, the histogram of the

calculated errors is shown. For the efficiency range of

0–14.4, the fact that the great majority of the cases have an

error less than 0.5 STB/MCF also highlights the high pre-

dictive capability of the trained neural network. Therefore,

this model can be used for screening of the cyclic nitrogen

injection process for a well with hydraulic fractures, when

the quantities of specified operational and reservoir/hy-

draulic fracture parameters are provided. This helps the

practicing reservoir engineer or manager to evaluate a large

number of different scenarios and obtain expected process

efficiency in a quick and practical manner.

4 Conclusions

The purpose of this study was to develop a better under-

standing of how operational and reservoir/hydraulic-frac-

ture parameters affect the performance of the cyclic

nitrogen injection in hydraulically fractured wells. This is

achieved by building and running a numerical reservoir

simulation model. The reservoir fluid is characterized with

a Mid-Continent crude oil that can be considered as vola-

tile. By extending the range of certain reservoir properties,

a generalized analysis is also carried out. Experimental

design methodology is followed to analyze the outcomes of

the wide ranges of the properties studied. A screening tool

is developed by training a neural network with the

knowledge base obtained with the simulation runs. The

principal conclusions drawn from this study can be sum-

marized as the following:

(1) Within the ranges studied, considering a cost of $1/

MCF for nitrogen generation, cyclic injection of

nitrogen is a feasible enhanced oil recovery method

in hydraulically fractured wells, especially in the

Appalachian Basin.

(2) The economic rate limit for stopping the production

and starting the injection must be optimized. The

0.1 1 10 50 100 Average

1000 0.6 1.6 1.9 1.9 1.9 1.6

2500 0.7 1.8 2.2 2.1 2.1 1.8

5000 0.8 1.9 2.3 2.3 2.4 1.9

7500 0.8 2.0 2.4 2.4 2.4 2.0

10000 0.8 2.0 2.5 2.4 2.5 2.0

Average 0.7 1.8 2.2 2.2 2.3

Matrix permeability, mD
Fr

ac
tu

re
pe

rm
ea

bi
lit

y,
 m

D

High base recoveryToo tight

Ec

Fig. 12 Average values of efficiencies of all cases with respect to matrix permeability and fracture permeability

0.01 0.05 0.1 0.25 0.5 Average

150 1.2 1.4 1.4 1.6 1.7 1.5

350 1.4 1.7 1.8 1.9 2.1 1.8

550 1.5 1.9 2.1 2.2 2.3 2.0

750 1.5 1.9 2.1 2.2 2.4 2.0

1050 1.5 1.9 2.1 2.2 2.3 2.0

Average 1.4 1.8 1.9 2.0 2.2
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Hydraulic fracture effectiveness can double the
process efficiency (from 1.2 to 2.4 STB/MCF)

Ec

Fig. 13 Average values of efficiencies of all cases with respect to effective fracture width and fracture half-length
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amount of existing energy in the reservoir is

important for successful application. When the

production is stopped at higher rates, the injection

and soaking time should be kept to a minimum so

not to lose production time that cannot be recovered

with the help of injection.

(3) A soaking period is necessary to allow for gas

diffusion, but together with the injection period, the

optimum time must be determined as long shut-in

periods (longer than 100 d) cause dissipation of

pressure after injection.

(4) Matrix permeability is very critical such that

permeabilities of 10 mD and higher result in more

favorable results. The fracture permeability affects

the process less than the matrix permeability, and an

effective fracture permeability can increase the

efficiency by 25 %.

(5) Longer ([150 ft) and wider ([0.01 ft) fractures

provide better efficiency because of the greater

surface area for gas diffusion. With the same

operating conditions, hydraulic-fracture effective-

ness can double the efficiency.
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Fig. 14 Architecture of the ANN developed. qi is the injection rate, MCF/day; ti is the length of the injection period length, d; ts is the length of

the soaking period length, d; qoe is the economic rate limit for each cycle, STB/day; Gi is the volume of gas injected in each cycle, MCF; km is the

matrix permeability, mD; kf is the fracture permeability, mD; b is the effective fracture width, ft; Xf is the effective fracture half-length, ft; Af is

the effective areal size of the fracture, ft2

Table 6 Characteristics of the

constructed artificial neural

network

Property Value

No. of input neurons 12

No. of hidden layers and neurons 1 hidden layer with 50 neurons

No. of output neurons 1

Training algorithm Levenberg–Marquardt backpropagation

Transfer function between input and hidden layers Hyperbolic tangent sigmoid

Transfer function between hidden and output layers Linear

Training set, % 70

Validation set, % 15

Testing set, % 15

Max. No. of epochs 10,000

Min. error, % 0.0001

Max. No. of iterations without improvement 200
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(6) An ANN-based proxy model is successfully trained,

and the resulting model can be used as a quick

screening tool to estimate the discounted process

efficiency, once corresponding operational and

reservoir/hydraulic-fracture parameters are provided.

The model was able to estimate the efficiency of 188

cases that it had not seen before with a correlation

coefficient of 0.96.
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