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A b s t r a c t 

The influence of radially sheared toroidal flows" on the Trapped Ion Mode (TIM) is 
investigated using a two-dimensional eigenmode code. These radially extended toroi
dal microinstabilities could significantly influence the interpretation of confinement 
scaling trends and associated fluctuation properties observed in recent tokamak ex
periments. In the present analysis, the electrostatic drift kinetic equation is obtained 
from the general nonlinear gyrokinetic equation in rotating plasmas [M. Artun and 
W. M. Tang, Phys. Plasmas, 1 2682 (1994)]. In the long perpendicular wavelength 
limit KPbi <S 1, where pu is the average trapped-ion banana width, the resulting 
eigenmode equation becomes a coupled system of second order differential equations 
for the poloidal harmonics. These equations are solved using finite element meth
ods. Numerical results from the analysis of low and medium toroidal mode number 
instabilities are presented using representative TFTR L-mode input parameters. To 
illustrate the effects of mode coupling, a case is presented where the poloidal mode 
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coupling is suppressed. The influence of toroidal rotation on a TFTR L-mode shot is 
also analyzed by including a beam species with considerable larger temperature. A 
discussion of the numerical results is presented. 

I. Introduction 

The influence of sheared equilibrium flows on tokamak microinstabilities is a topic 
of considerable importance to the fusion community. Experimental evidence as well 
as theoretical studies indicate that radially sheared equilibrium flows have a favorable 
impact on the energy transport associated with low frequency electrostatic microtur-
bulence. 

In the magnetic braking experiments performed on DIII-D, LaHaye, et al.1 have 
observed that when core toroidal rotation was reduced by applying magnetic braking 
in the Very High (VH) confinement mode, the ion heat conductivity Xi increased 
significantly with only minor changes in temperature and density profiles. Fluctuation 
measurements on TFTR by Fonck, et al.2 indicate that the radial correlation length 
decreases significantly as core toroidal rotation is increased. 

Theoretical studies of the kinetic Ion Temperature Gradient (ITG) instability 
in the simplified sheared slab geometry have generally found a strong reduction in 
the linear growth rate in the presence of radially sheared perpendicular flows. It was 
concluded that the mode is stabilized by perpendicular sheared flows with magnitudes 
of the order v± ~ 0{Jp^ Lrvti) and a shear length comparable to other equilibrium 
scale lengths in the system, LVl ~ C(Lj-). However, the extrapolation of this result 
to full toroidal geometry is not straightforward. Even though toroidal effects such as 
curvature and VB drifts are incorporated in various semi-slab studies, a proper kinetic 
treatment of trapped particles requires a fully two-dimensional analysis in toroidal 
geometry. The most prominent type of long wavelength toroidal microinstabilities is 
the trapped-ion mode (TIM) in the presence of a significant ion temperature gradient. 
One of the most important feature of these instabilities is their global nature, i.e., 
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large radial correlation lengths that can vary on the equilibrium (i.e., toroidal minor 
radius) scale length rather than on the ion gyroradius scale length usually associated 
with kinetic microinstabilities. Heuristic estimates of energy transport make these 
the leading candidates to account for the Bohm-like confinement observed in many 
experiments. 

In this paper, we perform the first eigenmode analysis of the influence of sheared 
toroidal rotation on the trapped-ion mode in a low-/? tokamak. The initial work by 
Kadomtsev et al.3 indicates that the TIM has a real frequency below the diamagnetic 
drift frequency, w,j, and below the bounce frequency wy. These instabilities are 
easier to excite in the core region of tokamak fusion plasmas where the plasma can 
be considered to be effectively collisionless. For typical fusion plasma parameters in 
the core region, both the diamagnetic drift frequency and the ion bounce frequency 
are well above the ion-ion collision frequency. Hence, for the time scales of interest, 
collisions are not expected to have a significant effect. Collisional effects on the 
trapped-ion mode4 and the sheared slab ion temperature gradient mode have been 
treated elsewhere5 and will not be considered in our analysis. 

To facilitate the analysis of the problem a few simplifying assumptions are made. 
The mode is considered to be purely electrostatic due to low plasma pressure, i.e., 
low /?, and the magnetic surfaces are taken to be concentric circles. Considering 
low toroidal mode numbers, the radial wavenumber, K, is assumed to be small, 
satisfying krp^ $ 1, where p« is the ion banana width. Under these assumptions, 
finite larmor radius effects can be ignored since Pi/pu ~ 0(e1^2/g). This justifies using 
the electrostatic drift kinetic equation. Integrating along unperturbed particle orbits 
leads to the perturbed distribution function, and the quasineutrality condition is then 
used to close the system of equations. The resulting set of eigenmode equations is 
solved using finite element methods. 

The equilibrium parameters studied in this paper are taken from the TFTR L-
mode shot #49982. Results from calculations with full poloidal mode coupling as 
well as cases where mode coupling is artificially suppressed, are presented. The effect 
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of hot particles is also analyzed for this type of discharge since a beam species with 
significantly higher temperature and small density fraction is present. It can be argued 
that since these particles have much larger thermal speeds, the toroidal rotation of 
the main ion population should not be felt by these particles and toroidal rotation 
stabilization would thereby not be as significant in the presence of beam species. 

The rest of this paper is organized as follows. In Sec. II the drift kinetic equation is 
presented and equilibrium quantities in the presence of toroidal rotation are described. 
Sec. Ill describes the derivation of the two-dimensional eigenmode equation based on 
the earlier derivation by Marchand. 6 , 7 In Sec. IV numerical results are presented 
followed by a summary and discussion of results in Sec. V. 

II. Kinetic Equations and Equilibrium 

The drift kinetic equation used in the analysis of the trapped ion mode to calculate 
effects of sheared toroidal rotation is obtained by taking the linear electrostatic limit of 
the general geometry nonlinear gyrokinetic equations derived by Artun and Tang 8 in 
the presence of axisymmetric plasma rotation. This derivation involves transforming 
the velocity variable to the moving frame. The new velocity variable is defined as 
c = v + V, where V is the toroidal rotation velocity assumed to be of the form 
V = Q(ij;)R£. Here ^ is the poloidal magnetic flux, R is major radius, and C is the 
unit vector in the toroidal direction. 

Considering modes with krpu % 1 implies k±Pi <C 1 for large aspect ratio (or large 
q) tokamaks. In the limit 

lim J0(kxpi) = 1, 

the gyrokinetic equation becomes the drift kinetic equation: 

$ (1) — + (C||fl + V + c D ) • V »-*£( l + v - * 
+ ^ - [ V * x n • V V • (qfi + V) + (C||fl + V) • V V • V * x n ] ) (2) 



Here h is the non-adiabatic portion of the perturbed distribution function given by 

f = h + Z e ^ . (4) 

$ is the perturbed electrostatic potential, and n is the unit vector along the magnetic 
field. The equilibrium electrostatic potential $o is what remains after the lowest 
order electrostatic potential, $_i, which is necessary for radial force balance, has 
been transformed away.8 

The guiding center drift velocity, CD, with the Coriolis and centrifugal forces taken 
into account, is 

n | ^ V $ 0 + | v h B + (c„n + V) • (VV + c,|Vn) (5) 

and F is the equilibrium distribution function, which is assumed to be an isotropic 
Maxwellian in the energy variable. E. The lowest order expressions for the guiding 
center variables are: 

Mel MQ?R2 

E=^-+/iB-^^-+Ze^, (6) 

Mcl 

and R = x + - ~ - , (8) 

where Q is the angular rotation frequency which must be a flux function to satisfy 
equilibrium constraints,9 and fic = ZeB/Mc is the Larmor frequency. 
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II.A Equilibrium Electrostatic Potential 

In the derivation of the general gyrokinetic equation, it was indicated that the 
equilibrium distribution function had to be of the form8 

F = F(R±,fi,E). (9) 

Hence for an isotropic Maxwellian distribution function (d/dfi = 0) in circular toroidal 
geometry, we have: 

where n(r) is a flux function related to density. Using the Jacobian for the velocity 
space variables in the rotating and laboratory frames, 

dc 
dv = 1, (11) 

one can easily integrate the perturbed distribution function to obtain the following 
expression for the density: 

M&H2 Ze% 
2T n = n(r) exp (12) 

However, this expression yields different densities for ions and electrons at different 
poloidal locations for an arbitrary choice of the equilibrium potential <$0. The main 
reason is that the centrifugal forces experienced by the ions and electrons are vastly 
different, and the force experienced by the electrons is negligible for all practical 
purposes. The large centrifugal force on the ions is reduced by this electrostatic 
potential and at the same time the electrons are pulled into the ions in order to 
maintain quasineutrality. Hence, equilibrium can only be achieved by the appropriate 
choice of $o- To incorporate the poloidal variation, one can assume $o ~ R2, i-c, 

*o(rJfl) = 4 0 ( r ) ^ M . ( i 3 ) 
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An expression for $o can be obtained by making a large aspect ratio expansion of R. 
Expanding R2 ~ Rl(l + 2ecos#) to first order in t = r/Ro, one can define: 

.MQ2Rl Ze$0. no(r) - n{r) exp[- 2T 
(14) 

to obtain: 
n — no(r) exp MQ2Rln n 2 e § 0 „ 

—±2e cos 6 r=r- 2e cos 6 2T 
(15) 

The quasineutrality condition can now be solved order by order. To lowest order 
in the expansion parameter e, the quasineutrality condition will be satisfied by the 
choice of 

Tloj = fjTloe, (16) 

and requiring Hj^e Zjfj = 1, where noe is the electron density. To next order in e, 
we expand the exponential in Eq. (15) and the quasineutrality condition becomes: 

U2R2 ZjfjMj , ^ Zjfj e$ 0 (m 

where we have ignored the centrifugal force on electrons. Solving for $o and substi
tuting in $o we obtain: 

Defining 

$o — 
Q2R2 

2e ^ + E ^ 
- l 

Zje$0 = aj-^— 

(18) 

(19) 

wi th 

Mi 
1 , r Zlh 

1 ' k*e I* 

. ^*AM* 
k^e 

(20) 
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the energy for species j will be given by 

* - ¥ + $ - < . - ^ (21) 

where h{9) = 1 + 1 cos 6. Ignoring terms of 0{e2), it is convenient to define a new 
energy variable 

(22) ^ = M + ^_w<l -« , )£?£ 
which will only include the poloidally varying part of the centrifugal and electrostatic 
potential. Since terms of 0{e2) have been neglected, it is useful to slightly modify £" 
(for reasons to become clear later) to obtain: 

E> _ M A j . vBo _ egjcosg 
2 +h{0) 

where 
9j = 2(1 - Qj) 

MjtfRl 

(23) 

(24) 

Then, using the definition of no introduced above, the equilibrium distribution will 
be given by: 

F = FM(E>) = ^Le-e'T. (25) 

It is convenient to define the dimensionless variables E = E'/T, jh = IJ,BO/T, and 
g = g/T. In terms of these variables the expression for the parallel velocity cy is given 
by: 

h{e)c\ = vl{E + g) E-fi. 

We can then define 

E + g 

P + 9 
E + g 

+ ecos# (26) 

(27) 
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such that the expression for the parallel velocity becomes: 

C | | ~ c r | | 7 V 2 t W l -
h{8) 

(28) 

with 7 = E + g. It is useful to note here that 7 is the rotation modified energy 
variable which will appear in most expressions involving particle orbits. 

II.B Perturbed Distribution Function 

Using the modified energy variable defined in Eq. (22) and using Eqs. (3) and (4), 
the equation for the perturbed distribution function / becomes: 

/ d \ dF , \ 
{ — + q|fl ' V + c c - V + V - V / = ~Ze~dEi ( cH f i • V + C D ' V ) $ 

ZedF —^j(V$xn) • (VV- (C||n + V) + (q,A + V) • W ) 
Q.cdE' 

Ze 
+ M L ^ X ^ - W -

Assuming that 

and using 

®(x> *) = H *m(r) exp[^C - im9 - iut] 

exp[—i(Z( - ut)} 1/ 

(29) 

(30) 

(31) 

we get 

1 1 tn=-oo J-0° 

exp {i\l(C - C) - m{9' - 0) - u(t' -1)]} (32) 
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Here £', ff, r ' are evaluated at f, and 
IE' 3 \ 

m cT dlnn 

, ,(m) _ , fin) + 2i3 
nj?(c|| + SIR) 

2T/M 

Jr] s -

n = 

$ = 

r ZeB dr 

dlnT /dlan 
dr I dr 

91nfi /d\nn 
dr I dr 

and -rr = -r- + c,,n -V+V-V + cD-V. at at (33) 

However, this form of iJff' will be insufficient when we consider the E', /x integra
tion. Thus it is appropriate to define: 

where 

[m) _,-.lm) ,-.(">) £ i 

- (m) (m) 

and 

1 + 

QR 

IE 3 \ + 2d 
n2R* 

„2 ' 

(34) 

(35) 

(36) 

III. The Eigenmode Equation 

The eigenmode equation is obtained by integrating the drift kinetic equation along 
unperturbed particle orbits to obtain an expression for the perturbed distribution 
function. Upon calculating the perturbed density for each species, the quasineutrality 
condition is used to close the equations and obtain an eigenmode equation. 
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III.A Integration Along Unperturbed Orbits 

In Eq. (32) one can perform the time integration when one knows the expressions 
r(t), 0(t), and C(*) along the particle orbit. However, a major difficulty arises due to 
the fact that the poloidal harmonics, $ m ( r ) , appear inside the integral. Since their 
form is unknown, the integration is not straightforward. 

III.A.l Long Wavelength Limit 

In the limit where the electrostatic perturbations have longer radial scale lengths 
than particle excursions from the flux surface, we can Taylor expand the poloidal 
harmonics up to second order in (r' — r), where r and r' denote the radial coordinate 
of the particle at times t and f: respectively. This procedure yields: 

<Mr') - *«(r) + (r' - r)^> + l-(r> - rf^-> + Otffc). (37) 

Hence, the eigenmode equation describing the time evolution of the perturbed distri
bution function can be written as: 

1 i m=-oo J-°° 

exp {»[I(C - 0 - ™(0' -0)- w(f - t ) ]} x 

[*™(r) + (r' - r )* B ( r ) + ±(r' - r ) 2 < ( r ) J (38) 

where ' in $'m corresponds to a radial derivative. We are now able to take $m(r) 
outside the integral and the calculation6,7 of the time dependency of the rest of the 
quantities is straightforward though tedious. 
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III.A.2 Particle Drifts 

The guiding center drift velocity of particles is given by 

">=£* | | V S 0 + | - V In 5 + (c„n + V) • (VV + C|,Vn) 

Noting that ft • VV = V • Vn, we can write Eq. (39) as: 

n -rr V$„ + -7rV In B+c2n-Vn + V VV + 2c.ifi-VV 

E x B VB curvature centrifugal coriolis 

(39) 

(40) 

Here $o is the potential necessary to obtain charge neutrality due to the different 
centrifugal forces experienced by the ions and electrons. It was defined in Sec. II.A 
as: 

MQ2R2 

Ze% = a—-—, 

where a = a(r) is different for each species. The terras in QD are given by: 

V • VV = -&R (f cos0 - tfsinfl) , 

n • VV =-f i ( f c o s 0 - 0 s i n 0 ) - - f t cos6>C, 
Q 

(41) 

Ze 
M V $ 0 = -a.n2R — + SI — cos 0 

%VlnJ3 + cifn-Vn: MMi-
t-att2Rsm68, 

cos 8 f + sin 9 6\, 

VV • n = fi(r cos 0 - 0sin 9) + -Q cos 0£ + tt'Rr, 

and VV • V = Sl2R(r cos 9 - 6 sin 9) + Qtt'R2*, (42) 
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where a and ft are denned as: 

Qdr' 

and a = 
r da 
adr 

(43) 

Note that a involves derivatives of ion fraction as well as ion temperature. Using the 
relations in Eq. (42) we get: 

CDr = -
sin# 

RQQC 

cpe : cost 

( l - a ) n 2 ^ + 2 c | , n / Z o + ( | + c f j ] 

(i - a)tfRl + 2cnaR0 +(— + 4] 

+ aQ2R2J{l+fj 

and cDr = — c D g . 
9 

III.A.3 Particle Excursion 

(44) 

The expression for the excursion of trapped and circulating particles from the flux 
surface can be calculated using conservation of toroidal canonical angular momentum. 
Denoting (r, 6) as the position of the particle, and (rb, 9b) as the bounce point of 
trapped particles (with c\\b = 0), the conservation law gives: 

Cn(T\0)Mflo(l +ecos0) + MQ(r)Rl{l + 2ecos0) 
ZeA((r) 

MSl(rb)R2

l(l+2ecos6b) 
ZeA((rb) (45) 
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where A( is the toroidal component of the vector potential and we have used v|| s 
(en + UR). Expressing 

Ac(r) = (r - n)^\rb, and 0(r) * (r - r t ) | £ | r t , (46) 

leads to: 
r - r . - qi+2rfl(cosg-coBft) 

There are two new terms to be noted in this expression. The first is the orbit squeez
ing effect introduced in the denominator. For typical tokamak plasmas the angular 
rotation velocity will be a decreasing function of r, and Q' will be negative. This ef
fect will be negligible in the core region where the scale length of the angular rotation 
frequency is comparable to the minor radius. However, it is appropriate to note that 
it was shown in earlier studies that the orbit squeezing effect can be important in the 
edge region of H-mode plasmas.10 Nonetheless this term is retained for completeness 
in the present analysis even though it has no significant influence on our results. The 
other term to be noted is the second term in the numerator which is associated with 
good and bad orbits. It is interesting to point out that since the symmetry is bro
ken by this term, co- or counter-rotation of the plasma can make a difference in the 
results. 

It is evident from Eq. (47) that since r—rj, is periodic in the bounce time n defined 
in Appendix A, r — n can be expressed as a Fourier series in the bounce frequency 
Wb = 27T/T(,. Specifically, 

r - r 6 = ^ " V " " " - ' , (48) 
n 

and the coefficients r^ will be given by: 

r(«) = 1 / d* (r - rb)e-inuit. (49) 
T(, ./orbit 

Introducing an angle-like time variable t (see Fig. 1) defined as: 
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<t Flux surface 

Trapped 
particle 

orbit 

t = o,n 

* = 0,T, 

Circulating 
particle 

orbit 

Figure 1: The angle-like time variable i for trapped and circulating particles. 

f , d" (50) ROQ re aff 
y/yvth Jo yfl - A/A(0) 

7"6 
t(0,<7|| = - l ) = ~ *(0,<7|| = 1) 
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for trapped particles, and 

t(9) = _ Rpqan f6 (M* 
^va Jt> Jl - A/h{9) 

(51) 

for circulating particles, we can express t = t0 + i, where t0 is arbitrary. The integral 
then yields: 

4g-«"n«l'o /-TJ/4 
r (n) _ 

T„(n9 - Q'RQ) 
-—- / di ( |CII| sin 2 —- + 2rficosOcos 2 — 1 cos mubi. (52) 
//to) /o V 2 2 / 

such that 

where 

•-rb = Y,r[n\ ^inuj^t 

?(-) = ^ / „ , 
TTLJ, 

^ 
«th 

fie-fi'^o 
and 

d<? 
,n7T 2tiZ7 COS0 

sm — + • cos 2 V ^ ^/l - A/h(9) 2 _ 

Here we have introduced the dimensionless variable w defined as: 

SlRa 

cos nujbt. 

Vth 

In Eq. (56) the Jacobian is given by: 

%^^!W), 

(53) 

(54) 

(55) 

(56) 

(57) 

(58) 

which is a smooth function in the domain of integration. The Fourier series for r—rb 

converges as n -> oo due to the fact that for large values of n, cos nubi' will be a 
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rapidly oscillating function. Hence, the integral of this rapidly oscillating term over 
a smooth function will vanishes as n —> oo; i.e., 

lim In = 0. (59) 

III.A.4 Particle Phase 

In order to more conveniently perform the integration in time, the particle phase 
exp i[l(C - 0 ~ "*(#' ~ #)] that appears in Eq. (32) can be expressed as: 

t(C ~0- m{6' -0)= £ (lft - mf^j dt". (60) 

Defining 
- ; d ^ i d e r i m 

"D = lTt-lqdl' ( 6 1 ) 

we can approximate this integral as 

l(C - 0 - m{ff -B)~ (wD)b/t (f -t) + S^\ff -6)-HS^cr^dt' -1), (62) 

where 
S^m){r) = lg(r)-m (63) 

with H = 1 for circulating particles and H = 0 for trapped particles. Using the 
expressions derived in Sec. III.A.7 for cDe and c ^ it is straightforward to obtain for 
wD: 

uiD ~ in - yCDg + s^3L(r - rh/t), (64) 

where s = rq'/q. The calculation of (UD),,,, can be performed using the formalism 
described in Appendix A. 

For trapped particles: 

(uD)b = lQ{rb) + (-cDe)b + <-^-q|(r - rb))b. (65) 
T Trio 
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Using 

we get 

(wfl)f, = Kl(rb) + 

±+Cl=

vA. 
2 2 2 E + 

eg cos 9 
h{9) 

{\-a)tfRl+V-±E + atfRl{tl + ?-) 

+ {^9)h±cg + I<efcc,*)b} + r R J : Q I R o ) ( 4 ) , (67) 

Using the expressions derived in Appendix A.0.1 this can be expressed as: 

1 v=. •>,& ta*-«h) + j&{(»fg-.) (1 - a)ro 2 +-E + aw2{^ + ft) 

+ 2 VK K{K) 2 K K{K)+1) 

2lsyv?h (E{K) 2 \ 
^ ) i ^ ) + K - 1 j ' + i?0

2(fts - ft' 

For transit particles we have 

(68) 

(uD)t = m{rt) + 
_J_( 
rR0nc\ 

{cos0)t (1 - a)Q2R2

0 + Y E + ««2-Ro(fi + f) 

+ (cos20)t^+^<cfcos0)t 

+ r ^ ( n f - f f f t ) [ < c 8 ) ' - ( c ' > ? - 2 r n ( c " > ' < C 0 8 f l > ' ] ' (69) 
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Again, using the expressions derived in Appendix A.0.2 we get: 
1 
2 <->• - M K £ ) + ' - 2 " ' ) ["" ">''+^+-^+"' 

+ 

+ 

K^^-^i^H-*)) 
+ 

(2e7) 2IJ*- 1) I , 2* 7ij§ f 2E(K-1) TTV 
~ 2 ~ " * ( « - » ) / flj|(n, - Q'R0) 

K Kin-1) 4K2(K~I) 

~ " i '7 ( 2 e 7 ) 1 V( . + m(r«) (70) 

The term expi[S ( m )(0' - 6) - HS{m)a\\ujt{t' - t)} is a periodic function in time 
with the bounce/transit frequency. Hence it can be written as a Fourier series in the 
bounce/transit frequency, using the angle-like time variable £. For trapped particles 
we can write 

e ^ ' ^ a W e ^ , (71) 

and the coefficients are given by: 

T& /orbit 

—tnu/fct' (72) 

Using the transformation properties of i we then get: 

a<n> = - / d? f (cos S ( m ) 0 ' + i sin 5 ( m ) 0') (cos W - * sin ? W ) (73) 

- (cosmr - isinrc7r)(cosS'm'#' + ismS^m)6')(cosnui,i' + i sin nubi')] • 

The cross terms will yield zero and we can replace 1 — cos TOT = 2sin2(rc7r/2) and 
1 + cos rnr = 2 cos2(«7r/2) to obtain: 

o ( n > = - / dt' 
n Jo 

cos2 ^ cos S ( m ) 0' cos nujbi' + sin2 ^ sin S ( T n )0' sin nubi' (74) 

19 



We then get 

e«S<" ,>(«'-«) _ V ^ £ ( n ) e - , - S < m > 9 + ; W _ V^ a (n) e - i |S l™>»-na, i t ! e «i iu . l ( t ' -0 ^ 

n n 

where we have used r — t = f — t. We next define a n such that 

e

i S l m >(*'- 9» = £a n e* n W 4 t ( ' - " (76) 
n 

with 
an=e-HS^9-n.btl^jnm ( 7 ? ) 

and 
rffo(Aj 

Ai.ro = / """/= 
\/l ~ A/ft(ff) 

cos2 y - cos S ( m ) 0' cos nwfct' + sin2 ^ sin S ( m ) 0' sin W 

(78) 
Proceeding with a similar analysis for circulating particles, we have: 

e*> ,t[S<m>* ,-<7||S<mW] _ V ^MJnut't' :'] = ^ a ( n ) e i n u ' ? , (79) 

and the coefficients a ( n ) are given by: 

o ( n ) = - JT' df (cos[5 (m,9'-(n+o-||S (m))w ti"T + isin[S ( , n^'-(n+a||S l m ))a;,i ']) . 

(80) 
However, the sin[...] integral will vanish and we are left with 

&(»> = 1 f' 2 d? cos[S ( m )0' - (n + a||S ( m ))w ti'], (81) 

such that the phase can be expressed as 

etise»)(9'_j)_,||sc»)u,(t'_t)] _ y> e,nu;«(i'-0 ( 8 2 \ 
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Denning 
K n , p ,m = f , d 6 \ cos [SVtf - (n + nS^)u>tt'} , (83) 

J o yjl - A/h(6) 
o„ is given by: 

a, = £.e-^°-^s^)^K ( 8 4 ) 
irLt 

III.A.5 Time Integration 

Having formulated the particle phase and radial excursion as a Fourier series, we 
can now perform the time integration, keeping in mind that the perturbation vanishes 
at t = —oo. Hence, the perturbed distribution function becomes: 

/ = - ^ F M + ^ E e " < m V - ^ - ^ r ) x (85) 

£ a n UmG(n) + $'m £f„,e™'»"' [G(n + n,) - G(n)] 

+ 5*£ £ r„ 1 r n 2 e* ( ' " + "^"[G(n + m + n2) - 2G(n + m) + G(n)]\ , 
•»l,n2 J 

where G(n) is defined as: 

G ( " ) = ;—; ; ,, „, ., - . (86) 

III.B Quasineutrality Condition 

The perturbed distribution function for each species is integrated over velocity 
space to produce the perturbed densities. The quasineutrality condition is then simply 

ne = Y. Z)hi' ( 8 7 ) 

21 



which can be cast in the form 

J X ' " " [Pm(r, 9)^{r) + Qm(r, e)#Jr) + ^ ( r , 0)# r a(r)] = 0. (88) 
m 

In order to eliminate the explicit ^-dependence in this equation, a Fourier transform is 
performed to obtain a set of coupled ordinary differential equations involving $ m ( r ) . 
This is carried out by operating with (2ir)~1 fZ* 68etpe on the quasineutrality equation 
thereby generating equations of the form: 

£ ApmK(r) + B^Kir) + C p m $ m ( r ) = 0. (89) 
m 

In the evaluation of the coefficients we consider the radial excursions of the trapped 
ions to be dominant, with those of circulating ions being smaller by a factor of 0(e'/ 2) 
and those of electrons being smaller by a factor of 0{JMe/Mi). In other words, the 
coefficients Apm and Bpm will only involve contribution from trapped ions. For the 
coefficient Cpm which also includes the adiabatic response through the first term in 
Eq. (85), we assume that the non-adiabatic circulating electron response is negligible. 
Due to the fact that electrostatic and centrifugal trapping occur with sheared rotation, 
the velocity space integration must be carried out with special care. The integration 
limits and the order of the velocity integration combined with the Fourier transform 
is discussed in Appendix B. The choice for the integration order is dictated by the 
most suitable form for the numerical calculation of the integrals. 

III.B.l Adiabatic Density Response 

The adiabatic part of the perturbed distribution function in Eq. (85) is 

fadub. = -e§FMjT. (90) 

Integration over velocity space will then yield: 

= -noexp(e<?cos0)—, (91) ~adiab. 
" / 

27rci_dci_dci| 
ZeQFi M 
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where no was defined in Sec. II.A. Using the expansion for $. the Fourier transform 
is given by: 

"̂  = i /_ d e n ° exp[t§cos 0] e x p [ i ( p " m]9] ~T~- ( 9 2 ) 

We can expand the exponential to 0(eg) and get: 

n p,m — "0 rp 6p,m + -jr(<5p,m-l + <5p,m+l) • ( 93 ) 

After appropriate normalization with respect to Te, noe, and e, the contribution of 
the adiabatic density response to CPim is given by a sum over all species: 

<%T- = E Z)hti km + f (*p,m-l + <Wl)l (94) 

where the j summation includes electrons. 

III.B.2 Non-Adiabatic Density Response 

As noted earlier, we consider only the contribution from trapped ions in the cal
culation of Ap<m. In the expression for ur^' (see Eq. (34)), the parallel velocity 
dependent part, i.e., u>^'c\\/vth, is cancelled by £C T ; |, thereby leading to: 

* E < r : n - a ! ? , ) - >< t«) 
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Similar to the calculation of APt,n, the only contribution to BPtTrt comes from trapped 
ions: 

•»"> /•!+£ roo ftfa.(Y 1 + ^ r^riifY+Si/v 
vm exp -Y + 9j 

A - l 

The non-adiabatic portion of C p, r a can be written as 

C'non—adb. /^trapped i /^circ-1 i /-itirc-2 (97) 

with the first term being the trapped particle response, the second term corresponding 
to the integral involving w,™' as denned in Eq. (35), and the third term corresponding 
to the integral involving w;™' defined in Eq. (36). For the trapped particle term we 
obtain: 

„ W - (Wjy)6 - WWij + ll/j 

A - n 

(98) 

Similarly, the parallel velocity independent circulating particle term is straightfor
wardly calculated; i.e., 

r1-^ r^l/2(Y+g}/\y>\ 

(w — /fi — w*™' )(UJ + ifj) 

^-^E^MjCdAfdY •exp [-'•»¥] 
1 V (w + ^ ) 2 - [(n + 5(m))^]2 i v«.P.™A"."'.- (99) 

However, for the parallel velocity dependent part of the circulating response we en
counter a 6 integral which cannot be expressed in terms of the Fourier coefficients 
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introduced in Sections III.A.3 and III.A.4. To deal with this problem it is convenient 
to define: 

Mn,Ptm = J" cos [S^B ~{n + S(m>) uti{9)] d0. (100) 

This leads readily to the result: 

A - l <&* - S ^ / ^ / ' d A f d r ^ ^ ^ e x p [-Y + Bj x 

V (w + iVj)2 - [(n + Slm>)wt]2 

Hence, C p , m is given by: 

C' ^fadiab. . ^trapped • /-icirc— 1 , /-ictrc—2 / I A A \ 

III.C Boundary Conditions 

The two-dimensional eigenmode equation formulated in the preceding sections as 
a set of coupled second order differential equations requires proper boundary condi
tions in the domain r 6 [0,a]. Since the boundary conditions originally chosen by 
Marchand6 remain appropriate in the presence of sheared equilibrium flows, we can 
again select the boundary conditions for each poloidal harmonic to be given by: 

* m (a ) = 0, for all m, (103) 

$m(0) = 0, for m £ 0, (104) 

= 0, (105) 9£D 
dr 

which correspond to a conducting wall at r = a and would cause no charge accu
mulation on axis, r = 0. In practice, though, we allow the more general conditions 
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^miri.) = $m(7"R) = 0, where 0 < ri < rR < a, and perform the calcution only in 
this interval. Having assigned the boundary conditions, the problem is overspecified 
due to the fact that this is a homogeneous equation; i.e., $(r, 9, t) = 0 is a solution 
of the equation. Hence, there exists a non-zero solution only for certain values of the 
mode frequency w, thereby making this an eigenvalue problem. 

III.D Numerical Solution Method 

A finite element method with cubic-B splines as finite elements has been used 
for the numerical solution of this set of coupled differential equations. Since this 
procedure has already been described in detail in Ref. 6, it is not necessary to repeat it 
here. An important modification to Marchand's method is the choice of grid spacing. 
Rather than equally spaced grid points, the grid density is increased near the rational 
surfaces. This is motivated by the recognition that each poloidal harmonic displays 
its largest structure near its corresponding rational surface. It is in fact found that 
the same level of accuracy is achieved with fewer gridpoints when this variable grid 
spacing is employed. 

IV. Numerical Results 

IV.A Equilibrium Profiles 

For a realistic analysis of shear flow effects on the trapped ion instability we 
consider representative experimental data from TFTR for the density, temperature, 
and g-profiles. The data is obtained from a TRANSP run at 3.00 sec. of TFTR 
(L-mode) shot #49982. Even though our numerical scheme can deal with multiple 
ion species, we concentrate here on the basic case with a single ion species; e.g., a 
deuterium plasma. Since accurate velocity profile data was not available, the profile 
chosen for the toroidal rotation velocity corresponds to the ion temperature profile. 
This seems to be a reasonable choice, since most experimental measurements indicate 
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that the ion toroidal momentum diffusion coefficient, x*> and the energy transport 
transport coefficient, x«> are very similar in their radial variations. Measurements of 
Ti(r) and V^(r) profiles in DIII-D plasmas also support this trend.11 Accordingly, the 
angular rotation frequency fi is chosen to be: 

w-v^gWr <106) 

Here, for Mo = 1, the angular rotation velocity on axis (r = 0) would correspond to 
Mach number 1. Thus, the parameter we vary in this analysis is M0, which is termed 
"the Mach number on axis". 

The equilibrium profiles for n, Te, T{, and q vs. r/a are plotted in Fig. 2. The 
largest drive for the mode is expected to come from the region around r/a = 0.55, 
where the "local value for r^ is T){ ~ 7. Hence, we expect the mode to be localized in 
this region. 
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Figure 2: Equilibrium density, temperature and q-profiles for the TFTR L-mode shot 
# 49982. 
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IV.B Single Poloidal Harmonic Case 

To isolate the effects of sheared toroidal flows on the trapped ion instability, we 
first study the simplest limit where only a single poloidal harmonic is considered. 
Although our analysis is formulated to deal with the general case of poloidal mode 
coupling in toroidal geometry, it is possible to chose a g-profile for which the mode 
rational surfaces are spaced a large distance apart. This would then correspond to a 
sheared slab geometry analysis with toroidal effects like trapped particles, magnetic 
drifts etc. artificially included in the model. Heie we follow an easier path by ar
tificially turning off the off-diagonal elements of the APim, Bpm, and C P i T n matrices. 
In this way, the equations become decoupled. Due to the nature of the problem, the 
eigenvalue satisfying the equation for $ m o , w ( m o ) , will result in $ m ^ m o = 0. This 
analysis is also useful in identifying the "parent" mode of a fully coupled eigenmode. 
By decreasing the masking multiplier of the off-diagonal elements from 1 to 0, one 
will end up with a single poloidal harmonic, which can be called the parent mode. 

For TFTR L-mode parameters, the i = 2, m = 5 single poloidal harmonic case 
is analyzed. The parameter Mo corresponding to the Mach number on axis is var
ied between —0.25 and 0.25. As explained earlier, the angular rotation frequency 
profile is taken to be the same as the ion temperature profile. It is scaled to give 
the corresponding value of MB as described in the previous section. In Fig. 3 the 
growth rate, 7, and the real frequency in the moving frame, wr — lil(ro), are plotted 
against the rotation parameter Ma. The real frequency of the mode involves a large 
Doppler shift corresponding to the level of rotation where the mode is maximized, 
e.g., around r/a ~ 0.55 for ihe TFTR L-mode parameters. Hence, a plot of wr versus 
the Mach number on axis, M0, yields an almost straight line, since the Doppler shift 
in the frequency dominates all other variations associated with shear flow effects. For 
this purpose, rather than plotting the real frequency itself, the Doppler corrected 
frequency is plotted. This is obtained by choosing an appropriate radial location To 
such that uiT — lQ(r0) displays the most structure with respect to M0. This quantity 
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Figure 3: Growth rate, y, real frequency in the moving frame, uir — IQ, transport 
estimate, 7/fc;?, and average radial wavenumber, Kpbi, vs. the Mach number on axis, 
MQ, for TFTR L-mode parameters, I — 1 and the single poloidal harmonic m = 0. 

is termed the "real frequency in the moving frame". As discussed in Sec. 1II.A.3, 
a difference between co- and counter rotation is expected. Results here indicate a 
modest difference of this type along with a significant stabilizing effect with respect 
to the shear flow parameter M0. 

The values of the average radial wavenumber (krPbi) and the heuristic anomalous 
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Figure 4: Eigenfunctions of the single poloidal harmonic case (I = 2, and m = b) 
with TFTR L-mode data, (a) M0 = 0.; (b) M0 = 0.24. 

diffusivity estimate {l/k^) vs. the Mach number on axis, Mo, are plotted in Fig. 3. 
The decrease in the transport estimate by sheared toroidal rotation is due to both 
the reduction in the growth rate y and the increasing radial wavenumber. The mode 
structures for a case with rotation and one without rotation are shown in Fig. 4. Here, 
for M 0 = 0.2, the mode is narrower compared to the Mo = 0 case. We also observe 
that for the case with sheared rotation, the mode is localized slightly away from the 
rational surface corresponding to I = 2, m = 5. 
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IV.C Fully Coupled Cases 

Using the equilibrium profiles described in Sec. IV.A, the most realistic fully 
coupled cases for toroidal mode numbers I = 2 and I = 4 are analyzed. In these 
cases, the model angular rotation profile which scales as the ion temperature is again 
used. The primary finding is that the trapped ion instability is significantly stabilized 
for Mo ~ 0.2, the Mach number on axis. This result is in line with the findings for 
the ion temperature gradient mode in simple sheared slab geometry studies, as well 
as with the single poloidal harmonic case described in the previous section. In what 
follows, the numerical results pertaining to each toroidal mode number are given in 
detail. 

IV.C.l Toroidal mode number I = 2 

The / = 2 case is one of the simpler cases considered. This is due to the fact that 
since there are very few rational surfaces in the region of free energy, the associated 
numerical analysis is much easier to implement. As in the single poloidal harmonic 
case of Sec. 1V.B, the parameter varied is the Mach number on axis, Mo. Keeping 
three poloidal harmonics m = 4 , . . . , 6 with the nonuniform grid scheme, the rotation 
parameter M0 is varied between —0.2 and 0.2. In Fig. 5 the growth rate 7 is plotted 
vs. Mo. The stabilizing influence of sheared rotation is evident from this figure. 

Specifically, the growth rate is reduced by half for a rotation value of Ma ~ 0.15. 
The real frequency in the rotating frame wr — Kl(ro) vs. Mo is also plotted in Fig. 5 
along with the average radial wavelength in terms of the ion banana radius and the 
transport estimate (^jk^.)T. Similar to the case in Sec. IV.B the decreasing growth 
rate is accompanied by an increase in the radial wave-number (or decrease in mode 
width), such that the transport estimate is reduced even further. The radial structures 
of the poloidal harmonics at selected rotation values are plotted in Fig. 6. Compared 
with the Mo = 0 case, the mode widths of the individual poloidal harmonics are 
significantly reduced for the Mo = 0.2 case. 
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Figure 5: Growth rate, j , real frequency in the moving frame, wT — Ifi, transport 
estimate, 7/fcj?, and average radial wavenumber, krp^, vs. the Mach number on axis, 
Mo, for TFTR L-mode parameters and toroidal mode number I = 2. 

An interesting feature of sheared toroidal rotation is shown in Fig. 7. Here, a 
contour plot of the poloidal cross section of the eigenmode is plotted at the rotation 
values corresponding to Fig. 6. In the absence of rotation, the eddies in the bad 
curvature region (the outside of the tokamak, 6 6 [—n/2, TT/2}) point outwards and 
have significant radial extent. However, as the rotation parameter is increased, the 

< k r Pbi> 
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Figure 6: Eigenjunctions corresponding to Fig. 5. (a) Mo = 0; (b) MQ = 0.2. 

eddies in the bad cun'ature region get twisted and the radial extent is much narrower. 
A poloidal asymmetry also develops, which of course depends on the sign of the 
toroidal mode number, L 
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Figure 7: Poloidal cross-section of the eigenfunctions corresponding to Fig. 5. (a) 
Mo = 0; (b) Mo = 0.2. 
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IV.C.2 Toroidal mode number I = 4 

For the same equilibrium configuration as in the I = 2 case of Sec. IV.C.l, sheared 
toroidal rotation has a significant stabilizing effect on the I = 4 case. Using the 
poloidal harmonics m = 8, . . . , 12, the toroidal rotation parameter M0 is varied from 
-0.1 to 0.1. In Fig. 8 the growth rate is plotted against the Mach number on axis, M0-
Much like the 1 = 2 case, the growth rate decreases as toroidal rotation is increased. 
Slight asymmetry in the growth rate with respect to the direction of toroidal rotation 
is visible in Fig. 8. This asymmetry is basically due to trapped particle orbit effects, 
i.e., good and bad particle orbits associated with co- and counter-rotation. The real 
frequency in the rotating frame for this case is plotted in Fig. 8. 

The average radial wavenumber {Kptn), and the transport estimate are also shown 
in Fig. 8. The highest value for the Mach number that can be analyzed using our code 
can be obtained by inspection of Fig. 8. For |A/0| « 0.1, the average wavenumber 
(Kpu) —> 1 where the differential approximation breaks down. Fig. 8 indicates that 
the transport estimate is more favorably affected by co-rotation (Afo > 0) compared 
to counter-rotation (Mo < 0). 

The corresponding eigenfunctions for the I = 4 case are given in Fig. 9 for Mo = 0 
and Mo = 0.1. The locations of the rational surfaces corresponding to the poloidal 
mode numbers m = 8,.. . , 12 are also indicated in this figure. The individual poloidal 
harmonics are localized around their associated rational surfaces. In Fig. 9 it is 
evident that the mode gets narrower with increasing toroidal rotation. In the absence 
of rotation (Mo = 0), the dominant poloidal harmonics are m = 10 and m = 11. For 
co-rotation, Mo > 0, the mode is shifted inward (Fig. 9), and the dominant poloidal 
harmonic is now m = 10. 

The poloidal cross-sections of the eigenfunctions for the same rotation values as 
in Fig. 9 are plotted in Fig. 10. For the I = 4 case, the structure of the outward 
pointing eddies in the bad curvature region is more pronounced compared to the 
eigenfunctions of the / = 2 case plotted in Fig. 7. The effect of toroidal rotation on 
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Figure 8: Growth rate, j , real frequency in the moving frame, wT — ffi, transport 
estimate, l/k,, and average radial wavenumber, krp>n, vs. the Mach number on axis, 
Mo, for TFTR L-mode parameters and toroidal mode number I = 4. 

the poloidal mode structure is visible in Fig. 10b. The eddies become twisted in the 
poloidal direction and narrower in the radial direction. Note that the eigenmode is 
no longer poloidally symmetric. 
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Figure 9: Poloidal cross-section of the eigenfunctions corresponding to Fig. 8. (a) 

M0 = 0; (bj M0 = 0.1. 
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Figure 10: Poloidal cross-section of the eigenfunctions corresponding to Fig. 5. (a) 
M o = 0; (b) Mo = 0.1. 
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IV.D Beam Species 

The effects of toroidal rotation in the presence of a beam species are illustrated in 
Fig. 13. For this analysis, experimental profiles of electron density and temperature, 
and beam density and temperature along with main ion temperature are used. The 
main ion density is calculated by the relation rij = ne — a^m where at is the beam 
density multiplier. Three cases are presented corresponding to aj = 0,1,2. Hence, 
this means that for on, = 0 we ignore beam ions, for at — 1 we use actual experimental 
data, and for a\, = 2, the hypothetical case of double the experimental beam ion 
density is considered. 

It is found that in the absence of toroidal rotation (for Mo = 0) the linear growth 
rate decreases as the beam ion density is increased. This is the expected dilution 
effect since the instability is mainly coming from the free energy in the main ion 
population whose fraction is now reduced. However, when toroidal rotation is present, 
the presence of beam ions actually reduces the stabilizing influence of sheared flows. 
This trend can be understood by recalling the fact that the instability drive of the 
beam ion population, although smaller than that of the main ion population, is not 
affected by sheared flows, since the average thermal speed of beam ions is significantly 
larger than the flow velocity. 

V. Summary and Discussion 

An important area of current research deals with the question of what is the actual 
spatial extent of the turbulence controlling anomalous transport in tokamaks. The 
prevalent view has been that anomalous transport is primarily driven by electrostatic 
microinstabilities whose spatial extent is typically several ion-gyroradii. This leads to 
a so-called Gyro-Bohm scaling of confinement. However, more recent experimental 
evidence from TFTR and D1II-D along with theoretical studies of long-wavelength 
turbulence suggests that Bohm-scaling could be dominant and that the associated 
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Figure 11: Growth rate, real frequency, radial wavenumber, and transport estimate 
vs. toroidal rotation parameter, in the presence of beam ions. 

spatial scale should be on the equilibrium (plasma radial dimension) length scale. 
In the present paper we have presented the first gyrokinetic toroidal analysis of the 
influence of sheared toroidal rotation on the electrostatic trapped ion mode. The two-
dimensional linear treatment of these important long wavelength instabilities has been 
performed using a finite element code to calculate the eigenfunction and the eigenfre-
quency associated with a chosen toroidal mode number. The equilibrium quantities 
are taken from experimental data, i.e., representative TFTR L-mode profiles were 
used. 
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The principal results indicate that both the linear growth rates as well as the 
radial correlation lengths are decreased in the presence of sheared toroidal rotation. 
The changes in the heuristic estimates of diffusivity, 7 / ^ , are even more pronounced 
since a decrease in the growth rate is associated with an increase in the radial wave-
number. These trends are in reasonable agreement with results from recent BES 
(beam emission spectroscopy) measurements of long-wavelength turbulence in TFTR 
plasmas.12 

It can be concluded that for toroidal rotation velocities comparable to a fraction 
of the main ion thermal velocity and with velocity shear scales comparable to the ion 
temperature scale length, the longest wavelength portion of trapped ion instability 
spectrum can be significantly stabilized. The limitation of the present analysis is that 
only modes with radial wavelengths longer than the ion banana width can be analyzed. 
In order to deal with the shorter perpendicular wavelengths, i.e., for larger toroidal 
mode numbers, an integral eigenmode analysis including FLR effects is necessary. 
For present day computer capabilities this is a formidable task. Even though the 
ballooning formalism has been effectively employed for high toroidal mode numbers 
in the absence of strong toroidal rotation,13 in the presence of strong toroidal rotation 
it is not applicable to the shear flow problem in a straightforward manner due to the 
fact that the large Doppler shift in the real part of the eigenfrequency breaks the 
ballooning approximation that the mode frequency has only small variations across 
magnetic surfaces. 
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Appendix A. Averages over particle orbits 

Using the definitions of cjj, A, and 7 given in Sec. II.A we can calculate certain 
averages over particle orbits. The material presented here is taken from Ref. 6 with 
shear flow modifications. 

A.0.1 Trapped particles 

Defining 
2«2 = 1 + ^-~, (Al) 

the parallel velocity can be expressed as: 

c„ = ( 7 | | ^ 6 1 / 2 7 1 / V 2 K 2 - 1 + cos0. (A2) 

The bounce frequency is defined as 

dfl 
•/orbit u 

Using 6 ~ c\\/RQq this can be expressed as: 

4f?o9 /••» M 

t do 
*SLT ( A 3 ) 

n-
/•"» do 

Jo S/2K2 - 1 + cos?' ' Vth(n)1/2 Jo V2K2 - 1 + cos (9 

Using the transformation sin(0/2) = «sin£ gives 

60= *«*»& . (A5) 
^1 - /e 2 sin 2 £ 

In terms of f we get: 

C|| = (e7),/2wrtA/5«2cose, (A6) 

and cos 6 = 1 - 2K2 sin2 < (A7) 
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so that the expression for TJ becomes: 

Using the definitions for complete elliptic integrals of the first and second kind 

f*/2 d£ 
: 2sin 2£ 

n/2 

and defining 

we get 

E(K) = f d ? \ / l - « 2 s i n 2 ? , (A9) 

/ (« )= f" df c o s 2 f v / T ^ 2 l i n 2 7 , (A10) 

T l = d i ^ 4 * ( K ) - (A11) 

The function I(K) can be expressed in terms of elliptic functions. However, we use a 
9th order polynomial approximation given by: 

l(x) = -0.0469408683 x + 1.35138578 x2 

- 10.3802946x3 + 45.5537980 T 4 - 108.138006a:5 

+ 142.277853i6 - 97.4188862a:7 4- 27.1340637a:8. (A12) 

The forms of these functions are shown in Fig. 12. 
The bounce average of any quantity can then be defined as: 

< , W > I = J ^ / • * * « > * ( A 1 3 ) 

TbVthie'jy'2 Jo \/l-K2sin£ 
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Figure 12: Plots of the functions K{K), B(K), and I(K). For I(K) both the value 
obtained by numerical integration and by the polynomial approximation given in 
Eq. (A 12) are plotted. 
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or using the expression for n we get: 

<»(»)>. (A14) 

We are interested in calculating {c\\)b, (c 2 ^ , (cos (?}<,, (cos2 8)b, (c||)i„ {c||cos0)!„ and 
cjjcosl?. By symmetry, we see that (c||)(, = 0, and (q|COs(?)(, = 0. Fo; the rest of these 
bounce averages we get: 

1 r*l2 

(cos8)b = —- d£ 
K(K) JO 

E(K) 
= 2 — — — 1 

K{K) V' 

2\j\-Kism2£,-
V ' l - ^ s i n 2 ? 

(C|i)t = 
*(*) •/o v / l -^s in 2 ? 1 J 

(2^7)4 ^ + * 2 - l 

<cj cos 6)b = {^P± r . ^ 2K2 cos 2f( 1 - 2« 2 sin 2 0 

= i £ M r / 2

d P 

+ ( 2 K 2 - 2 ) ^ / l - « ; 2 s i n 2 f + 

2<c2 cos 2fi / l - / t 2 s in 2 f 

2 - 2 « 2 

(2£7Kft 
2 ^ ^ + (2« 2 -1) |^4 +1-K 2 

* ( « ) 

^ / l - K 2 s i n 2 £ 

K{K) 

and (cos2 0) 6 = -Jr- f . ^ (1 - 2K 2 sin 2 £) 
if(«)A y n K 2 S i n 2 ^ 

(A15) 

(A16) 

(A17) 
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i w 2 r i i 
= Trrx / d£ 2K 2 COS 2£ V1 - K2 sin 2 £ - 2K V 1 - K2 sin 2 £ 

K(K) JO I v v 

^m-tfEpL+i. 

A.0.2 Circulating Particles 

(A18) 

Similar to the trapped particle calculation, the transit time, T, is defined as: 

•costf 
Rzq r dfl 

Tt ~ VthW2 J-n V2K* - 1 + ( 
(A19) 

Introducing the variable £ = 0/2 with dd — 2df, we get: 

7" 
Jo 

vth(n)1/2 J° </2K,^l-K-2sin2t vth(2ny2 KK{K-1)' 

Then, the transit average of any quantity g{6) can be defined as: 

r/2 s(€)d€ 

(A20) 

K(K ') J o y/l-K-- 2 s i n 2 ? 

The various quantities of interest will then be given by: 

{cos*}, = — i - C'2 -=JL == [ 2 K 2 ( 1 - K- 2 sin 2 ?) + 1 - 2K 2 ] 
* ( * ) j ° v / l - « - 2 s i n 2 ? L J 

(A21) 

= 2K' 
,2 £(«-') 

A-(«-») 
+ (1 - 2 K 2 ) , (A22) 

(of), = f ^ r T = ^ L = = = 2 , 2 ( 1 - « - 2 s i n 2 0 
^ 1 " ) " v / l - K - 2 s i n 2 ? 

= (2(7)e?fcK2 , 2 ^ ( K ) 

<c 2cos0), = £ j % f / 2 d ? 2 « 2 c o s 2 ^ 1 - « - W £ 

(A23) 
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, „2J(<c ') 
= ^X"2j^-ty ( A 2 4 ) 

2 1 r / 2 dgcos'ff 
(COS 0)t = 777 — / , 

ff(«-i)/o ^ / l -K-^s in 2 ? 

= T T ^ T T f ' % ^ = = [2K 2(1 - K- 2sin 20cos2£ 

+ 2«2(1 - 2«2)(1 - K- 2 s in 2 0 + (1 - 2K 2 ) 2 ] 

^I|f(h(e7)1/2 Z"/2 dg\/2~KCos£ and <C||), = — . / , 
tf(« *) Jo Ji _ K-: 

2 sin2? 

- I ^ ^ S t ^ I j - (A26, 

Appendix B. Integration Limits 

The presence of the electrostatic trapping term requires the velocity space inte
grals for trapped and transit particles to be handled carefully. An inspection of the 
expression for parallel velocity in Eq. (28) and fi will show that the velocity space 
integral, in terms of the guiding center variables can be expressed as: 

/-27rcLdcLdcj| = £ r dE' 

/•(hE'+tjcosio/Bo du.BQnV2 
x / . (Bl) 

J° h(e)M3'3y/E'- fiB0/h(e) + egcos8/h(0) 
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In terms of the dimensionless variables introduced in Sec. II.A this will ba «iven by: 

/
TI-7,3 f 0 O fhE+egcoeB An 

2nc±dc, dc,, = ^ E / d£ / . d / * 
2 ^J-,ame/h Jo h{9)y/E-ji/h(0) + egcose/h(9) 

(B2) 
Or, using the definition of A from Sec. II.A it can be written as: / a r c a d e , - ^ E f dST ™£^ (B3) 

A/h(0) 

With regard to separating the trapped and circulating particle integrals it is im
portant to note that for £" < eg/(l - e). the lower limit of ft integration will not 
depend on E. Hence the trapped particle integral, in terms of E, and £ will consist 
of two parts in the form: 

/
ig/il-l) rM9)E+igcvs9 j-oc rh(»)E-t-ig cos $ 

d£ I dp + I dE f dp. (B4) 
igcos»/h(*) JO Jts/H-<) J{\-i)E-ig 

Let us now treat the trapped and circulating particle integrations separately. 

Appendix C. Trapped particle integration 

In terms of E and A, the trapped particle integral will be of the form: 

dE I d A + / dE I dA. (CI) 
g€cos8/h JgHE+g) Jcg/(l-t) Jl-e 

Since we are eventually interested in taking the Fourier transform, we will operate 
with /f„ d0 on the velocity integrals. The energy integral on the right does not have 
6 dependent bounds, thus we only have to consider the one on the left. We observe 
that the limits of E integration are even in 6 and considering /0

X d0 will be sufficient. 
Since the lower limit of E integration is a one to one function of 6, it can be inverted 
to yield: 

/ dE dB / dA. (C2) 
/ - c 9 / ( l + « ) Jo Jg/(Et;) 
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We again see that only the upper bound of the A integral has a dependence on 9. 
Hence, inverting the limits we get: 

/ AE / dA / d0. (C3) 
J - e j / ( l + 0 hl{E+g) JO 

Switching the order of the E and A integrations and adding the contribution of the 
integral on the right in Eq. (CI) we have: 

/•i+« r°° - r»o(A) 
/ dA / d£ / d0. (C4) 

Jl-e Jg{\-\)/\ J-0o{A) 

We can now transform the energy variable E to get rid of A-dependent bounds such 
that: 

E = Y+£-g. (C5) 

The integral over trapped particles can then be expressed as: 

fl+e foe /'80(A) 

-»o(A) 

/•1+e roc /-eo(A) 
/ dA / dY / d0. (C6) 

J l - e 7o J-80W 

The exact expression for the trapped particle velocity space integral including the 
Fourier transform will then be given by: 

— d6 27rci.dc,dc,| = -irT dA / dF / d<7\ J / ' • (C7) 
2 W - , r trapped 4 ^ 7 l - e ./o J-»o(A) ^ - A / / l ( 0 ) 

For orbit integrals the expression for qj will be given by: 

with 

^ ' W ^ / l - ^ , (C8) 

7 = Y + | . (C9) 
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A p p e n d i x D . Transit Part ic le integrat ion 

For transit particles we have no problem taking the 6 integral inside because none 
of the integration limits depend on 9. In terms of E and p, the circulating particle 
integral will be of the form: 

f°° _ r(l-i)E-tg 
/ dE dft (Dl) 

and using E and A we get: 

/ d£ / d\. (D2) 

We can define E' = E — eg/(l - e) and change the order of integration for E' and A 
to get: 

rl—£ roo 
/ dA/ AE'. (D3) 

To remove the A-dependence on the energy integral we use 

E = Y + ̂ -g. (D4) 

Finally, the circulating particle velocity space integration with the Fourier transform 
is given by: 

i f * / a r^dq = ^ E T^A /°V f d^ + * / A ) ' / 2 . (D5) 
2 T T . / - * ./transit 4 ^ 7o ./o ./-ir J ^ _ A / / l ( 0 ) 

Then the expression for parallel velocity will be given by: 

where 

c„ = ffattoV'V 1 - ~ , (D6) 

7 = V' + | . (D7) 
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