29 research outputs found

    Safety and pharmacokinetic profile of fixed-dose ivermectin with an innovative 18mg tablet in healthy adult volunteers

    Get PDF
    Ivermectin is a pivotal drug for the control of onchocerciasis and lymphatic filariasis, which is increasingly identified as a useful drug for the control of other Neglected Tropical Diseases. Its role in the treatment of soil transmitted helminthiasis through improved efficacy against Trichuris trichiura in combination with other anthelmintics might accelerate the progress towards breaking transmission. Ivermectin is a derivative of Avermectin B1, and consists of an 80:20 mixture of the equipotent homologous 22,23 dehydro B1a and B1b. Pharmacokinetic characteristics and safety profile of ivermectin allow to explore innovative uses to further expand its utilization through mass drug administration campaigns to improve coverage rates. We conducted a phase I clinical trial with 54 healthy adult volunteers who sequentially received 2 experimental treatments using a new 18 mg ivermectin tablet in a fixed-dose strategy of 18 and 36 mg single dose regimens, compared to the standard, weight based 150-200 ÎŒg/kg, regimen. Volunteers were recruited in 3 groups based on body weight. Plasma concentrations of ivermectin were measured through HPLC up to 168 hours post treatment. Safety data showed no significant differences between groups and no serious adverse events: headache was the most frequent adverse event in all treatment groups, none of them severe. Pharmacokinetic parameters showed a half-life between 81 and 91 h in the different treatment groups. When comparing the systemic bioavailability (AUC0t and Cmax) of the reference product (WA-ref) with the other two study groups using fixed doses, we observed an overall increase in AUC0t and Cmax for the two experimental treatments of 18 mg and 36 mg. Body mass index (BMI) and weight were associated with t1/2 and V/F, probably reflecting the high liposolubility of IVM with longer retention times proportional to the presence of more adipose tissue. Systemic exposure to ivermectin (AUC0t or Cmax) was not associated with BMI or weight in our study. These findings contribute to further understand the pharmacokinetic characteristics of ivermectin, highlighting its safety across different dosing regimens. They also correlate with known pharmacokinetic parameters showing stable levels of AUC and Cmax across a wide range of body weights, which justifies the strategy of fix dosing from a pharmacokinetic perspective

    Intrinsically regulated learning is modulated by synaptic dopamine signaling

    Get PDF
    We recently provided evidence that an intrinsic reward-related signal-triggered by successful learning in absence of any external feedback-modulated the entrance of new information into long-term memory via the activation of the dopaminergic midbrain, hippocampus, and ventral striatum (the SN/VTA-Hippocampal loop; Ripollés et al., 2016). Here, we used a double-blind, within-subject randomized pharmacological intervention to test whether this learning process is indeed dopamine-dependent. A group of healthy individuals completed three behavioral sessions of a language-learning task after the intake of different pharmacological treatments: a dopaminergic precursor, a dopamine receptor antagonist or a placebo. Results show that the pharmacological intervention modulated behavioral measures of both learning and pleasantness, inducing memory benefits after 24 hr only for those participants with a high sensitivity to reward. These results provide causal evidence for a dopamine-dependent mechanism instrumental in intrinsically regulated learning and further suggest that subject-specific reward sensitivity drastically alters learning success

    Model reference pi controller tuning for second order inverse response and dead time processesand science

    Get PDF
    In this paper, a One-Degree-of-Freedom PI controller is optimized using the model reference tuning approach for a Second Order Inverse Response and Dead Time Process operating as a servo control. In addition, a graphic user interface tool that computes the PI optimized controller parameters is presented, also showing the response of the control system operating as a servo-control (the optimized one) and the associated response for the regulatory-control case.Universidad de Costa Rica/[731-B4-213]/UCR/Costa RicaUniversidad de Costa Rica/[322-B4-218]/UCR/Costa RicaConsejo Interinstitucional de Ciencia y Tecnología/[DPI2013-47825-C3-1-R]/CICYT/EspañaUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ingeniería::Instituto Investigaciones en Ingeniería (INII

    Direct venous inoculation of Plasmodium falciparum sporozoites for controlled human malaria infection: a dose-finding trial in two centres

    Get PDF
    BACKGROUND: Controlled human malaria infection (CHMI) accelerates development of anti-malarial interventions. So far, CHMI is done by exposure of volunteers to bites of five mosquitoes carrying Plasmodium falciparum sporozoites (PfSPZ), a technique available in only a few centres worldwide. Mosquito-mediated CHMI is logistically complex, exact PfSPZ dosage is impossible and live mosquito-based interventions are not suitable for further clinical development. METHODS: An open-labelled, randomized, dose-finding study in 18-45 year old, healthy, malaria-naive volunteers was performed to assess if intravenous (IV) injection of 50 to 3,200 aseptic, purified, cryopreserved PfSPZ is safe and achieves infection kinetics comparable to published data of mosquito-mediated CHMI. An independent study site verified the fully infectious dose using direct venous inoculation of PfSPZ. Parasite kinetics were assessed by thick blood smear microscopy and quantitative real time PCR. RESULTS: IV inoculation with 50, 200, 800, or 3,200 PfSPZ led to parasitaemia in 1/3, 1/3, 7/9, and 9/9 volunteers, respectively. The geometric mean pre-patent period (GMPPP) was 11.2 days (range 10.5-12.5) in the 3,200 PfSPZ IV group. Subsequently, six volunteers received 3,200 PfSPZ by direct venous inoculation at an independent investigational site. All six developed parasitaemia (GMPPP: 11.4 days, range: 10.4-12.3). Inoculation of PfSPZ was safe. Infection rate and pre-patent period depended on dose, and injection of 3,200 PfSPZ led to a GMPPP similar to CHMI with five PfSPZ-infected mosquitoes. The infectious dose of PfSPZ predicted dosage of radiation-attenuated PfSPZ required for successful vaccination. CONCLUSIONS: IV inoculation of PfSPZ is safe, well tolerated and highly reproducible. It shall further accelerate development of anti-malarial interventions through standardization and facilitation of CHMI. Beyond this, rational dose selection for whole PfSPZ-based immunization and complex study designs are now possible. TRIAL REGISTRATION: ClinicalTrials.gov NCT01624961 and NCT01771848

    The EC-Earth3 Earth system model for the Coupled Model Intercomparison Project 6

    Get PDF
    The Earth system model EC-Earth3 for contributions to CMIP6 is documented here, with its flexible coupling framework, major model configurations, a methodology for ensuring the simulations are comparable across different high-performance computing (HPC) systems, and with the physical performance of base configurations over the historical period. The variety of possible configurations and sub-models reflects the broad interests in the EC-Earth community. EC-Earth3 key performance metrics demonstrate physical behavior and biases well within the frame known from recent CMIP models. With improved physical and dynamic features, new Earth system model (ESM) components, community tools, and largely improved physical performance compared to the CMIP5 version, EC-Earth3 represents a clear step forward for the only European community ESM. We demonstrate here that EC-Earth3 is suited for a range of tasks in CMIP6 and beyond

    Phosphofructo-1-Kinase Deficiency Leads to a Severe Cardiac and Hematological Disorder in Addition to Skeletal Muscle Glycogenosis

    Get PDF
    Mutations in the gene for muscle phosphofructo-1-kinase (PFKM), a key regulatory enzyme of glycolysis, cause Type VII glycogen storage disease (GSDVII). Clinical manifestations of the disease span from the severe infantile form, leading to death during childhood, to the classical form, which presents mainly with exercise intolerance. PFKM deficiency is considered as a skeletal muscle glycogenosis, but the relative contribution of altered glucose metabolism in other tissues to the pathogenesis of the disease is not fully understood. To elucidate this issue, we have generated mice deficient for PFKM (Pfkm−/−). Here, we show that Pfkm−/− mice had high lethality around weaning and reduced lifespan, because of the metabolic alterations. In skeletal muscle, including respiratory muscles, the lack of PFK activity blocked glycolysis and resulted in considerable glycogen storage and low ATP content. Although erythrocytes of Pfkm−/− mice preserved 50% of PFK activity, they showed strong reduction of 2,3-biphosphoglycerate concentrations and hemolysis, which was associated with compensatory reticulocytosis and splenomegaly. As a consequence of these haematological alterations, and of reduced PFK activity in the heart, Pfkm−/− mice developed cardiac hypertrophy with age. Taken together, these alterations resulted in muscle hypoxia and hypervascularization, impaired oxidative metabolism, fiber necrosis, and exercise intolerance. These results indicate that, in GSDVII, marked alterations in muscle bioenergetics and erythrocyte metabolism interact to produce a complex systemic disorder. Therefore, GSDVII is not simply a muscle glycogenosis, and Pfkm−/− mice constitute a unique model of GSDVII which may be useful for the design and assessment of new therapies

    Development and validation of an HPLC method for the determination of fluorouracil in polymeric nanoparticles

    Get PDF
    The objective of this work was to develop and validate a rapid high performance liquid chromatography (HPLC) method for the quantitative analysis of fluorouracil (5-FU) in polymeric nanoparticles. Chromatographic analyses were performed on an RP C18 column with a mobile phase consisting of acetonitrile and water (10:90, v/v) at a flow rate of 1 mL/min. The 5-FU was detected and quantitated using a photodiode array detector at a wavelength of 265 nm. The method was shown to be specific and linear in the range of 0.1-10 ”g/mL (r = 0.9997). The precision (intra- and inter-day) was demonstrated because the maximum relative standard deviation was 3.51%. The method is robust relative to changes in flow rate, column and temperature. The limits of detection and quantitation were 10.86 and 32.78 ng/mL, respectively. The method fulfilled the requirements for reliability and feasibility for application to the quantitative analysis of 5-FU in polymeric nanoparticles.O objetivo deste trabalho foi desenvolver e validar um mĂ©todo rĂĄpido de cromatografia lĂ­quida de alta eficiĂȘncia (CLAE) para anĂĄlise quantitativa de fluorouracila (5-FU) em nanopartĂ­culas polimĂ©ricas. Corridas cromatogrĂĄficas foram realizadas sob uma coluna RP C18 com uma fase mĂłvel consistindo de acetonitrila e ĂĄgua (10:90, v/v) a um fluxo de 1 mL/min. O 5-FU foi detectado e quantificado atravĂ©s de um detector de fotodiodos em um comprimento de onda de 265 nm. O mĂ©todo demonstrou ser especĂ­fico e linear na faixa de 0,1-10 ”g/mL (r =0.9997). As precisĂ”es (intra e inter dia) revelaram um desvio padrĂŁo relativo mĂĄximo de 3,51%. O mĂ©todo Ă© robusto considerando mudanças realizadas no fluxo da fase mĂłvel, temperatura e marca da coluna. Os limites de detecção e quantificação foram de 10,86 e 32,78 ng/mL, respectivamente. O mĂ©todo cumpriu os requisitos para ser considerado confiĂĄvel e viĂĄvel para aplicação na anĂĄlise quantitativa de 5-FU em nanopartĂ­culas polimĂ©ricas

    Centennial Channel Response to Climate Change in an Engineered River

    No full text
    Abstract Human intervention makes river channels adjust their slope and bed surface grain size as they transition to a new equilibrium state in response to engineering measures. Climate change alters the river controls through hydrograph changes and sea level rise. We assess how channel response to climate change compares to channel response to human intervention over this century (2000–2100), focusing on a 300‐km reach of the Rhine River. We set up a schematized numerical model representative of the current (1990–2020), non‐graded state of the river, and subject it to scenarios for the hydrograph, sediment flux, and sea level rise. We conclude that the lower Rhine River will continue to adjust to past channelization measures in 2100 through channel bed incision. This response slows down as the river approaches its new equilibrium state. Channel response to climate change is dominated by hydrograph changes, which increasingly enhance incision, rather than sea level rise
    corecore