2,244 research outputs found

    Entangling the motion of two optically trapped objects via time-modulated driving fields

    Get PDF
    We study entanglement of the motional degrees of freedom of two tethered and optically trapped microdisks inside a single cavity. By properly choosing the position of the trapped objects in the optical cavity and driving proper modes of the cavity it is possible to equip the system with linear and quadratic optomechanical couplings. We show that a parametric coupling between the fundamental vibrational modes of two tethered mircodiscs can be generated via a time modulated input laser. For a proper choice of the modulation frequency, this mechanism can drive the motion of the microdisks into an inseparable state in the long time limit via a two-mode squeezing process. We numerically confirm the performance of our scheme for current technology and briefly discuss an experimental setup which can be employed for detecting this entanglement by employing the quadratic coupling. We also comment on the perspectives for generating such entanglement between the oscillations of optically levitated nanospheres.Comment: 9 pages, 3 figure

    Reversible optical to microwave quantum interface

    Full text link
    We describe a reversible quantum interface between an optical and a microwave field using a hybrid device based on their common interaction with a micro-mechanical resonator in a superconducting circuit. We show that, by employing state-of-the-art opto-electro-mechanical devices, one can realise an effective source of (bright) two-mode squeezing with an optical idler (signal) and a microwave signal, which can be used for high-fidelity transfer of quantum states between optical and microwave fields by means of continuous variable teleportation.Comment: 5 + 3 pages, 5 figure

    First assessment of the plant phenology index (PPI) for estimating gross primary productivity in African semi-arid ecosystems

    Full text link
    The importance of semi-arid ecosystems in the global carbon cycle as sinks for CO2 emissions has recently been highlighted. Africa is a carbon sink and nearly half its area comprises arid and semi-arid ecosystems. However, there are uncertainties regarding CO2 fluxes for semi-arid ecosystems in Africa, particularly savannas and dry tropical woodlands. In order to improve on existing remote-sensing based methods for estimating carbon uptake across semi-arid Africa we applied and tested the recently developed plant phenology index (PPI). We developed a PPI-based model estimating gross primary productivity (GPP) that accounts for canopy water stress, and compared it against three other Earth observation-based GPP models: the temperature and greenness model, the greenness and radiation model and a light use efficiency model. The models were evaluated against in situ data from four semi-arid sites in Africa with varying tree canopy cover (3 to 65 percent). Evaluation results from the four GPP models showed reasonable agreement with in situ GPP measured from eddy covariance flux towers (EC GPP) based on coefficient of variation, root-mean-square error, and Bayesian information criterion. The PPI-based GPP model was able to capture the magnitude of EC GPP better than the other tested models. The results of this study show that a PPI-based GPP model is a promising tool for the estimation of GPP in the semi-arid ecosystems of Africa.Comment: Accepted manuscript; 12 pages, 4 tables, 9 figure

    Bios2mds: an R package for comparing orthologous protein families by metric multidimensional scaling

    Get PDF
    BACKGROUND: The distance matrix computed from multiple alignments of homologous sequences is widely used by distance-based phylogenetic methods to provide information on the evolution of protein families. This matrix can also be visualized in a low dimensional space by metric multidimensional scaling (MDS). Applied to protein families, MDS provides information complementary to the information derived from tree-based methods. Moreover, MDS gives a unique opportunity to compare orthologous sequence sets because it can add supplementary elements to a reference space. RESULTS: The R package bios2mds (from BIOlogical Sequences to MultiDimensional Scaling) has been designed to analyze multiple sequence alignments by MDS. Bios2mds starts with a sequence alignment, builds a matrix of distances between the aligned sequences, and represents this matrix by MDS to visualize a sequence space. This package also offers the possibility of performing K-means clustering in the MDS derived sequence space. Most importantly, bios2mds includes a function that projects supplementary elements (a.k.a. "out of sample" elements) onto the space defined by reference or "active" elements. Orthologous sequence sets can thus be compared in a straightforward way. The data analysis and visualization tools have been specifically designed for an easy monitoring of the evolutionary drift of protein sub-families. CONCLUSIONS: The bios2mds package provides the tools for a complete integrated pipeline aimed at the MDS analysis of multiple sets of orthologous sequences in the R statistical environment. In addition, as the analysis can be carried out from user provided matrices, the projection function can be widely used on any kind of data

    Topology optimization of geometrically nonlinear structures using an evolutionary optimization method

    Get PDF
    Iso-XFEM method is an evolutionary optimization method developed in our previous studies to enable the generation of high resolution topology optimised designs suitable for additive manufacture. Conventional approaches for topology optimization require additional post-processing after optimization to generate a manufacturable topology with clearly defined smooth boundaries. Iso-XFEM aims to eliminate this time-consuming post-processing stage by defining the boundaries using isovalues of a structural performance criterion and an extended finite element method (XFEM) scheme. In this paper, the Iso-XFEM method is further developed to enable the topology optimization of geometrically nonlinear structures undergoing large deformations. This is achieved by implementing a total Lagrangian finite element formulation and defining a structural performance criterion appropriate for the objective function of the optimization problem. The Iso-XFEM solutions for geometrically nonlinear test-cases implementing linear and nonlinear modelling are compared, and the suitability of nonlinear modelling for the topology optimization of geometrically nonlinear structures is investigated

    Performance Evaluation of Aspect Dependent-Based Ghost Suppression Methods for Through-the-Wall Radar Imaging

    Get PDF
    There are many approaches which address multipath ghost challenges in Through-the-Wall Radar Imaging (TWRI) under Compressive Sensing (CS) framework. One of the approaches, which exploits ghosts’ locations in the images, termed as Aspect Dependent (AD), does not require prior knowledge of the reflecting geometry making it superior over multipath exploitation based approaches. However, which method is superior within the AD based category is still unknown. Therefore, their performance comparison becomes inevitable, and hence this paper presents their performance evaluation in view of target reconstruction. At first, the methods were grouped based on how the subarrays were applied: multiple subarray, hybrid subarray and sparse array. The methods were fairly evaluated on varying noise level, data volume and the number of targets in the scene. Simulation results show that, when applied in a noisy environment, the hybrid subarray-based approaches were robust than the multiple subarray and sparse array. At 15 dB signal-to-noise ratio, the hybrid subarray exhibited signal to clutter ratio of 3.9 dB and 4.5 dB above the multiple subarray and sparse array, respectively. When high data volumes or in the case of multiple targets, multiple subarrays with duo subarrays became the best candidates. Keywords: Aspect dependent; compressive sensing; point target; through-wall-radar imaging

    Fungsi dan Nilai Khayi (Perahu Perempuan) bagi Suku Sentani di Kampung Ayapo Kabupaten Jayapura

    Get PDF
    This study discusses khayi, which focuses on how khayi function and value as a women's boat in the culture of the Sentani people. This research is ethnography with a qualitative approach and descriptive data analysis. Data collection techniques used were observation, interviews, recording and recording and literature study. Informants were selected based on purposive sampling. Then the data analysis used includes the process of data reduction, data display and data interpretation. The results showed Function of khayi is highly related to its shape. Khayi shape is an adaptive function of social culture life for Sentani tribe, especially in Ayapo village. Their knowledge of raw material and putting root of tree as the prow is an adaptive reaction to culture society. Its long, big shape has significant function to support and espouse fully activities of Sentani women. Value of khayi is an appreciative representation of Sentani men to their women for their significant roles in social culture cycle and family income and society as well

    Neuroimaging and Cognitive Function in Sickle Cell Disease: A Systematic Review

    Get PDF
    Sickle cell disease (SCD) is the most common inherited single-gene disease. Complications include chronic anaemia, reduced oxygen-carrying capability, and cerebral vasculopathy, resulting in silent cerebral infarction, stroke, and cognitive dysfunction with impairments in measures of executive function, attention, reasoning, language, memory, and IQ. This systematic review aims to investigate the association between neuroimaging findings and cognition in children with SCD. Searches of PubMed and Embase were conducted in March 2022. Studies were included if participants were <18 years, if original data were published in English between 1960 and 2022, if any genotype of SCD was included, and if the relationship between cognition and neuroimaging was examined. Exclusion criteria included case studies, editorials, and reviews. Quality was assessed using the Critical Appraisal Skills Programme Case Control Checklist. A total of 303 articles were retrieved; 33 met the eligibility criteria. The presence of overt or silent strokes, elevated blood flow velocities, abnormal functional connectivity, and decreased fMRI activation were associated with neuropsychological deficits in children with SCD when compared to controls. There is a critical need to address the disease manifestations of SCD early, as damage appears to begin at a young age. Most studies were cross-sectional, restricting the interpretation of the directionality of relationships. Future research employing longitudinal neuroimaging and neuropsychological assessments could improve our understanding of the cumulative consequences of SCD on the developing brain
    corecore