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ABSTRACT
The topology optimization using isolines/isosurfaces and extended finite
elementmethod (Iso-XFEM) is an evolutionary optimizationmethod devel-
oped in previous studies to enable the generation of high-resolution
topology optimized designs suitable for additive manufacture. Conven-
tional approaches for topology optimization require additional post-
processing after optimization to generate a manufacturable topology with
clearly defined smooth boundaries. Iso-XFEM aims to eliminate this time-
consuming post-processing stage by defining the boundaries using isoval-
ues of a structural performance criterion and an extended finite element
method (XFEM) scheme. In this article, the Iso-XFEM method is further
developed to enable the topology optimization of geometrically nonlinear
structures undergoing large deformations. This is achieved by implement-
ing a total Lagrangian finite element formulation and defining a structural
performance criterion appropriate for the objective function of the opti-
mization problem. The Iso-XFEM solutions for geometrically nonlinear test
cases implementing linear and nonlinear modelling are compared, and
the suitability of nonlinear modelling for the topology optimization of
geometrically nonlinear structures is investigated.

ARTICLE HISTORY
Received 25 October 2016
Accepted 22 November 2017

KEYWORDS
Topology optimization;
XFEM; geometrically
nonlinear; evolutionary;
mesh refinement

1. Introduction

There has been significant interest in topology optimization methods and applications over the past
three decades, stemming from the groundbreaking article of Bendsøe and Kikuchi (1988), which
introduced the homogenization method. Other methods developed after this include solid isotropic
material with penalization (SIMP) (Bendsøe 1989; Zhou and Rozvany 1991), evolutionary structural
optimization (ESO) (Xie and Steven 1993; Xie and Steven 1997), bidirectional evolutionary structural
optimization (BESO) (Querin, Steven, and Xie 1998; Yang et al. 1999; Aremu et al. 2013), level-set
method (Wang, Wang, and Guo 2003; Allaire, Jouve, and Toader 2004) and evolutionary-based algo-
rithms, e.g. the genetic algorithm (GA) (Jakiela et al. 2000) and differential evolution (DE) (Fiore et al.
2016). Althoughmany of the proposed topology optimization algorithms have been demonstrated for
classical problems, such as Michell-type structures and cantilever beams with rectangular domains,
less attention has been paid to applying these algorithms to three-dimensional (3D), real-life struc-
tures and real loading scenarios. In some cases, the mathematical complexity or the size of the finite
element (FE) design domain does not allow the algorithm to be properly implemented. OptiStruct
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(Altair Engineering) is an example of software designed to enable the SIMP method of topology
optimization to be applied to real components. Other software such as Nastran (MSC Software)
and Abaqus FEA (Dassault Systèmes) also have options to apply similar density-based approaches to
find the solution to topology optimization problems. Although the topology optimizationmodules of
these software applications are widely used for research and engineering purposes, a drawback of the
density-based approaches (and many other element-based approaches) is that they cannot provide a
clear and smooth representation of the design boundaries in converged topologies. This issue brings
difficulties in interpreting the solutions, combining them with computed-aided design and manufac-
turing the topologies. Therefore, the solutions usually need post-processing, reanalysing and shape
optimization before manufacturing.

Previous attempts to improve the surface quality of optimized solutions include the use of remesh-
ing/adaptive mesh techniques with topology optimization. Aremu et al. (2011) presented a hybrid
algorithm for topology optimization consisting of a modified form of the BESOmethod and an adap-
tive meshing strategy. A level-set-based r-refinement method was proposed by Yamasaki, Yamanaka,
and Fujita (2017) to generate a conforming mesh during the topology optimization process. The use
of hierarchical remeshing strategies for the BESO method was investigated by Panesar et al. (2017).
Nana, Cuillière, and Francois (2016) employed h-refinement to improve definition of the solid–void
interface of SIMP solutions.Wang, Kang, andHe (2013, 2014) proposed an adaptivemesh refinement
strategy based on independent point-wise density interpolation for topology optimization. The idea
was to refine the displacement field and the density field separately, aiming to achieve solutions with
high quality at a reasonable computational cost. As an alternative to adaptive topology optimization,
the topology optimization using isolines/isosurfaces and extendedfinite elementmethod (Iso-XFEM)
was developed in a previous study to address the issues related to the boundary representation of the
topology (Abdi, Wildman, and Ashcroft 2014; Abdi, Ashcroft, and Wildman 2014, 2014). The idea
was to use a simple evolutionary-based optimization algorithm (similar to BESO) while improving
the boundary representation by implementing an isoline/isosurface approach during the optimiza-
tion. An extended finite element method (XFEM) integration scheme was also used to increase the
accuracy of FE solutions near the design boundary. The method was successfully applied to two-
dimensional (2D) and 3D structures with complex design domains (Abdi, Ashcroft, and Wildman
2014), and the results showed a significant improvement in boundary representation and structural
performance of the solutions over conventional BESO.

The majority of work regarding topology optimization of structures is based on linear modelling
of the problems, assuming that the structure contains only linear elastic materials and undergoes
small displacements. Although this assumption can be effectively applied to a large range of structural
design problems, there are still many cases that require nonlinear modelling to obtain valid solutions.
Large deformation is a significant source of nonlinearity that can be found in many nonlinear prob-
lems. Examples of such problems include energy absorption structures and compliant mechanisms,
which can be classified generally as ‘geometrically nonlinear structures’.

A number of previous works considered geometric nonlinearity in topology optimization prob-
lems. Jog (1996) used a perimetermethod for topology design problems of nonlinear thermoelasticity.
Bruns and Tortorelli (1998) introduced a Gaussian weighted density measure for solving topology
optimization problems of geometrically nonlinear structures and compliant mechanisms. The exam-
ples provided in the above-mentioned studies were not able to show clearly a significant difference
in the converged topologies or values of the objective function between linear and nonlinear mod-
elling (Buhl, Pedersen, and Sigmund 2000). Buhl, Pedersen, and Sigmund (2000) coupled SIMP with
a nonlinear FE formulation to address the topology optimization of geometrically nonlinear prob-
lems. With the examples provided, Buhl and colleaugues showed that in many cases, the solutions
from the nonlinear modelling are only slightly different from the linear ones. However, if snap-
through effects are involved in the problems, the difference could be significant. Gea and Luo (2001)
proposed a microstructure-based design approach with a nonlinear FE formulation for the topol-
ogy optimization of structures with geometric nonlinearity. Pedersen, Buhl, and Sigmund (2001)
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considered topology optimization of nonlinear compliant mechanisms represented with frame ele-
ments. Bruns and Tortorelli (2003) proposed an element removal and reintroduction strategy for
topology optimization problems with geometric nonlinearity. Ha and Cho (2008) and Luo and Tong
(2008) developed a level-set-based topology optimization method for large-deformation problems.
Huang and Xie (2007, 2008) applied BESO for topology optimization of geometrically nonlinear
structures under both force loading and displacement loading.

An important consideration when applying topology optimization techniques to nonlinear struc-
tures should be the computational efficiency of the method, as the analysis requires much more
computation than that of a linear structure. This becomes even more important when applying the
method to 3D structures. The other issue that may arise in density-based topology optimization
approaches such as SIMP is the existence of intermediate densities in the solutions. Because of the
large displacements, the tangent stiffness matrix of low-density elements may become indefinite or
even negatively definite during the optimization process (Buhl, Pedersen, and Sigmund 2000; Bruns
and Tortorelli 2003). To overcome this issue, Bruns and Tortorelli (2003) proposed totally remov-
ing low-density elements. To stabilize the excessive distortion of low-density elements, Lahuerta et al.
(2013) proposed the use of a polyconvex constitutivemodel in conjunctionwith a relaxation function.
Wang et al. (2014) proposed a new interpolation scheme in which the strain energy density (SED) of
low-density elements and high-density elements was modelled using small deformation theory and
large deformation theory, respectively. An element deformation scaling approach was used by van
Dijk, Langelaar, and van Keulen (2014) to scale the local internal displacements in low-density ele-
ments. Huang and Xie (2007, 2008) suggested using hard-kill BESO to increase the computational
efficiency and avoid issues regarding the existence of intermediate-density elements.

The application of the Iso-XFEM method to the topology optimization of geometrically non-
linear structures could be of significant benefit because of its high computational efficiency and
lack of intermediate-density elements in the solutions, while it still benefits from high-resolution
boundary representation. In the next sections of this article, after presenting an overview of the
Iso-XFEM method, a nonlinear modelling strategy for geometrically nonlinear structures based on
an incremental–iterative Newton–Raphson approach is presented. An appropriate structural perfor-
mance criterion for stiffness design is derived and the Iso-XFEMmethod is demonstrated for several
large-deformation problems.

2. Overview of the Iso-XFEMmethod

The main three elements of the Iso-XFEM method are an isoline/isosurface approach to represent
the design boundary, XFEM to calculate the elemental sensitivities (a structural performance crite-
rion) near the boundary, and an evolutionary-based optimization algorithm. These three elements
are explained in this section.

2.1. Isoline/isosurface approach

Isolines/isosurfaces are the lines/surfaces that represent the points at which a function has a con-
stant value, named the isovalue, in a 2D/3D space. In structural optimization applications (Abdi,
Wildman, and Ashcroft 2014; Abdi, Ashcroft, andWildman 2014; Victoria, Martí, and Querin 2009;
Victoria, Querin, andMartí 2010), the boundaries are defined by the intersection of the structural per-
formance (SP) distribution with a minimum level of performance (MLP), which typically increases
during the optimization process. Figure 1(a) shows a 2D fixed grid design domain discretized with a
30× 30 mesh, where the intersection of SED distribution as a structural performance criterion with
a minimum level of SED gives the design boundary. The relative performance, α, is defined as

α = SP − MLP (1)
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Figure 1. (a) Boundary representation using isolines of a structural performance (SP) function [strain energy density (SED)]. The
intersection of SP distribution with the minimum level of performance (MLP) defines the current state of the boundary. (b) Implicit
representation of a two-dimensional design space and the structure’s geometry using relative structural performance (α). (c) Design
space decomposed into the solid region (α(x) > 0), void region (α(x) < 0) and boundary (α(x) = 0).

The design domain can be partitioned into the void phase, boundary and solid phase, with respect to
the values of relative performance:

α(x) :

⎧⎪⎨
⎪⎩

> 0 solid phase (DS)

= 0 boundary (∂DS)

< 0 void phase (DV)

(2)

Figure 1(b) and (c) shows how the design space, D, from Figure 1(a) is partitioned into DS, ∂DS
and DV using the relative performance function α(x), distributed over the design space.

2.2. XFEM

By implementing the above isoline/isosurface approach, the design boundary is superimposed on the
fixed grid FEs, making three groups of elements in the FE design space: solid elements, void elements
and boundary elements (the elements that lie on the boundary). The contribution of solid and void
elements to the FE framework can simply be considered by assigning solid and void (very weak)
material properties to those elements, respectively. In the case of boundary elements, to accurately
represent the design boundary while avoiding expensive remeshing operations, an XFEM approach
can be employed. An XFEM displacement function for modelling holes and inclusions is given by
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(Sukumar et al. 2001)

u(x) =
∑
i
Ni(x)H(x)ui (3)

where Ni(x) are the classical shape functions associated with the nodal degrees of freedom, ui. The
value of the Heaviside function H(x) is equal to 1 for the nodes and regions in the solid part of the
design and switches to 0 for nodes and regions in the void part of the design domain. Based on the
above displacement function, the stiffness matrix of an element with material–void discontinuity is
given by (Sukumar et al. 2001)

ke = ∫
�

BTCH(x)Bd� (4)

where � is the element domain, B is the displacement differentiation matrix, and C is the elasticity
matrix for the solid material. This XFEM scheme was realized by dividing the solid domain of the
boundary elements into sub-triangles (in 2D problems as shown in Figure 2(a)) or sub-tetrahedra
(in 3D problems as shown in Figure 2(b)), and then performing numerical integration over solid
triangles/tetrahedra using the Gauss quadrature method (Abdi, Ashcroft, and Wildman 2014).

The XFEM decomposition scheme shown in Figure 2 requires finding the solid domain of bound-
ary elements before decomposing it into triangles/tetrahedra. The solid domain of a boundary
element can be defined using solid nodes of the element (nodes with positive values of relative per-
formance) and the intersection points of the element edges and the boundary, i.e. points with zero
value of relative performance which can be found through bilinear (in 2D) or trilinear (in 3D) inter-
polation of relative performance (α) between the nodes. Various decomposition schemes can then
be employed to define sub-triangles/sub-tetrahedra for numerical integration, resulting in a similar
numerical accuracy (Li,Wang, andWei 2012). For instance, the solid region of quadrilateral elements
in Figure 2(a) was decomposed into sub-triangles by connecting a central point of the solid region to
the surrounding solid nodes and intersection points. Similarly, a hexahedral element can be initially
decomposed to a number of tetrahedra. For those tetrahedra that lie on the boundary, the solid region
of the tetrahedra can be further decomposed into sub-tetrahedra (Figure 2(b)), with the numerical
integration being performed over all solid tetrahedra.

Figure 2. Extended finite element method (XFEM) integration scheme: (a) solid domain of two-dimensional boundary elements,
divided into sub-triangles; (b) solid domain of 3D boundary elements, divided into sub-tetrahedra.
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2.3. Evolutionary-based optimizationmethod

The optimization algorithm used in the Iso-XFEM method is evolutionary based, i.e. based on the
simple assumption that the optimized solution can be achieved by gradually removing the inefficient
material from the design domain. However, unlike ESO, in which the material removal is carried
out at an elemental level, in this approach the optimization operates at a global level of structural
performance by the use of an isoline/isosurface design approach. An appropriate performance cri-
terion is used to characterize the efficiency of material usage in the design domain. Material is then
removed from low relative performance regions (x; α(x) < 0) and redistributed to the high relative
performance regions (x; α(x) > 0). The target volume of the design for the current iteration needs to
be calculated before any region is added to or removed from the structure. The target volume of the
design for the current iteration is given by

Vit = max(Vit−1(1 − ER),Vc) (5)

where ER is the volume evolution rate and Vc is the specified volume constraint. Once the target vol-
ume of the current iteration is found, theminimum level of performance that gives this volume needs
to be identified. This could be achieved through an iterative process, for instance by defining upper
and lower bands for MLP (which are equal to the maximum and minimum structural performance
in the first iteration, respectively), finding the volumes corresponding to the upper and lower bands,
averaging and updating the upper and lower bands until the difference between the volumes corre-
sponding to the upper and lower bands is smaller than a minimum value. The evolutionary process
continues until the volume fraction condition is satisfied. From this time forwards, the optimiza-
tion process runs with a constant volume fraction (as given by Equation 5) until the changes in the
objective function in the last five iterations are within a specified tolerance.

Figure 3 compares solutions achieved using SIMP, BESO and Iso-XFEM for the cantilever problem
of Figure 3(a) assuming linear deformations. It can be seen that the Iso-XFEM solution (Figure 3(d))
is represented with clearly defined boundaries, unlike the SIMP (Figure 3(b)) and BESO (Figure 3(c))
solutions, in which the solutions are represented with variable element densities and/or back-
ground mesh-defined boundaries. A more in-depth comparison of the methods in terms of solution

Figure 3. Comparison of topology optimization solutions achieved using different methods assuming linear deformation: (a)
design domain; (b) solid isotropic material with penalization (SIMP) solution; (c) bidirectional evolutionary structural optimization
(BESO) solution; (d) topology optimization using isolines/isosurfaces and extended finite element method (Iso-XFEM) solution.
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Figure 4. Illustration of the incremental Newton–Raphson approach.

performance can be found in Abdi,Wildman, and Ashcroft (2014) and Abdi, Ashcroft, andWildman
(2014).

3. Modelling geometric nonlinearity

3.1. Incremental–iterative approach

In this study, the incremental Newton–Raphson approach is utilized to find the equilibrium solu-
tion at every evolutionary iteration. In this approach, the applied load (R) is first divided into a set
of smaller load increments. Then, starting from the first load increment, using the tangent stiffness
matrix (KT), the displacement caused by that force increment is computed. Using the accumulated
displacement, the resistant force (F) is obtained and the unbalanced force (tR − tF), which is the dif-
ference between the applied and the resistant forces, is determined. The iterative process at this load
increment continues by calculating a new tangent stiffness matrix, finding the displacement and the
unbalanced force (Figure 4). The equations used in the Newton–Raphson method can be stated as
(Bathe 2006)

t+�tKT
(it−1)�u(it) = t+�tR − t+�tF(it−1)

t+�tu(it) = t+�tu(it−1) + �u(it) (6)

where �t is a suitably chosen time increment and it denotes the iteration number of the New-
ton–Raphson procedure in each time increment. The initial conditions at the start of each time
increment are:

t+�tu(0) = tu; t+�tK(0)
T = tKT ; t+�tF(0) = tF (7)

Convergence is achieved when both the errors, measured as the Euclidean norms of the unbalanced
forces and of the residual displacements, are less than a minimum value. The complete equilibrium
path can be traced by finding the subsequent solution points at higher load levels using the same
approach.

3.2. Geometrically nonlinear behaviour of a continuumbody

In this study, the assumption is that the structures undergo large deformation with small strain.
To model this nonlinear behaviour, the total Lagrangian (TL) formulation is utilized, in which all
static and kinematic variables are referred to the initial undeformed configuration of the structure
and the integrals are calculated with respect to that configuration. Because of the transformations,
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a new measure for stress, the second Piola–Kirchhoff stress tensor, has to be introduced with the
Green–Lagrange strain tensor. Considering TL formulation for a general body subjected to applied
body forces f B and surface tractions f S on the surface S and displacement field δui, the equation of
motion is given by (Gea and Luo 2001)∫

0V

Sijδεijd0V =
∫
0V

f Bi δuid0V +
∫
0Sf

f Si δuiSd0S (8)

where Sij denote the Cartesian components of the second Piola–Kirchhoff stress tensor, δεij are the
components of the Green–Lagrange strain tensor corresponding to the virtual displacement field δui,
and 0V denotes the body volume at initial configuration. The Green–Lagrange strain tensor, which
is defined with respect to the initial configuration of the body, is given by (Gea and Luo 2001)

εij = 1
2

(
∂ui
∂0xj

+ ∂uj
∂0xi

+ ∂uk
∂0xi

∂uk
∂0xj

)
(9)

Considering reasonably small strains, the general elastic constitutive equation can still be used:

Sij = Cijklεij (10)

whereC is the elasticity tensor. Equations (8)–(10) are the basic equations for calculating the response
of a continuum body using the TL formulation. However, to solve these equations for strongly non-
linear problems, one may need to use an incremental–iterative approach, such as Newton–Raphson,
as discussed in Section 3.1.

3.3. Continuous form of the equilibrium equation

Introducing the incremental approach to find the structural responses in nonlinear structures, one
can decompose the displacements, strains and stresses at time t + �t as

t+�tui = tui + �ui; t+�tεij = tεij + �εij; t+�tSij = tSij + �Sij (11)

where �ui, �εij and �Sij denote the displacements, strains and stresses increments, respectively, to
be determined. The strain increments can be defined as the sum of linear and nonlinear terms as

�εij = eij + ηij (12)

where the linear incremental strain, eij is given by

eij = 1
2

(
∂�ui
∂0xj

+ ∂�uj
∂0xi

+ ∂�uk
∂0xj

∂ tuk
∂0xi

+ ∂�uk
∂0xi

∂ tuk
∂0xj

)
(13)

and the nonlinear incremental strain, ηij is defined by

ηij = 1
2

∂�uk
∂0xi

∂�uk
∂0xj

(14)

Implementing Equation (11) into the equilibrium equation (Equation 8) and assuming �Sij =
Cijkleij and δ�εij = δeij, the linearized incremental equation of motion is obtained as∫
0V

cijkleijδekld0V +
∫
0V

tSijδηijd0V =
∫
0V

t+�tf Bi δ�uid0V+
∫
0Sf

t+�tf Si δ�uSi d
0S−

∫
0V

tSijδeijd0V (15)

The left-hand side of Equation (15), which is dependent on the displacements and stress field, defines
the so-called tangent structure. The right-hand side of this equation represents the out-of-balance
virtual work of the body. One may need to use iterative methods for solving this equation until the
out-of-balance force vanishes.
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3.4. Finite element formulation

Transforming the continuous form of the equation of motion represented by Equation (15) to an FE
formulation, the equilibrium equation is obtained as (Gea and Luo 2001; Bathe 2006)

tKT�U = (K0 + Kd + Kσ )�U = �F (16)

where tKT is the tangent stiffness matrix and �F is the load imbalance between the external forces
t+�tR and the internal forces tF. K0 is the usual small displacement stiffness matrix represented by

K0 =
∫
V0

BTL0CBL0d
0V (17)

where BL0 is a linear strain–displacement transformation matrix used in linear infinitesimal strain
analysis. The stiffness matrix Kd in Equation (16) represents the large displacement stiffness matrix
and is defined by

Kd =
∫
V0

(BTL0CBL1 + BTL1CBL0 + BTL1CBL1)d
0V (18)

where BL1 is a linear strain–displacement transformationmatrix which depends on the displacement.
Kσ in Equation (16) is the initial stress matrix dependent on the stress level, and is given by

Kσ =
∫
V0

BTNL
tSBNLd0V (19)

where BTNL denotes the nonlinear strain–displacement transformation matrix and tS denotes the
second Piola–Kirchhoff stress matrix, which in a 2D formulation is defined by

tS =

⎡
⎢⎢⎣
tS11
tS21
0
0

tS12
tS22
0
0

0
0

tS11
tS21

0
0

tS12
tS22

⎤
⎥⎥⎦ (20)

The correct calculation of the internal forces, tF in Equation (16), is crucial as any error in this
calculation will result in an inaccurate response prediction. The internal forces can be found from

tF = ∫
V0

(BL0 + BL1)TtS̄d0V (21)

where t S̄ is the second Piola–Kirchhoff stress vector. Equation (16) is used to find the displacement
increment corresponding to the state t + �t, which is then added to the displacement at state t to
obtain displacement at state t + �t. The strain–displacement relation inEquation (9) allows the strain
to be determined from the displacements and, using the constitutive relation in Equation (10), one
can then calculate the corresponding stresses.

3.5. XFEM for geometrically nonlinear behaviour

To find the properties of the elements on the evolving boundary during the optimization process,
a similar XFEM scheme as in the linear case (Section 2.2) can be used. In the case of geometrically
nonlinear problems, the contributions of the solid parts of the boundary elements into the elements’
tangent stiffness matrix as well as the elements’ internal forces need to be identified. Therefore, the
integrations associated with tangent stiffness matrix (Equations 17–19) and internal forces (Equation
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21) should bemerely performed on the solid region of a boundary element. If four-node quadrilateral
elements are used in the FE model of the structure, this can be done by dividing the solid part of
the boundary elements into sub-triangles and performing Gauss quadrature (Abdi, Ashcroft, and
Wildman 2014). Following that, the element’s tangent stiffness matrix tkT can be obtained from

tkT =
n∑

i=1

m∑
j=1

Aitwjf1(ξ
j
1, ξ

j
2, ξ

j
3) (22)

where i and j are the indices regarding the partitions and Gauss points, respectively; n is the number
of solid partitions (sub-triangles) inside the element and m is the number of Gauss points in each
partition. ξ1:3 are the natural coordinates of the Gauss points, Ai is the area of the triangle i, t is the
thickness of the 2D element, w is a weighting factor and

f1 = BTCB + BTL0CBL1 + BTL1CBL0 + BTL1CBL1 + BTNL
tSBNL. (23)

Internal force vector tFe can be obtained from

tFe =
n∑

i=1

m∑
j=1

Aitwjf2(ξ
j
1, ξ

j
2, ξ

j
3) (24)

where

f2 = (BL0 + BL1)TtS̄ (25)

The elements’ tangent stiffness matrices and internal force vectors can then be assembled to obtain
the global tangent stiffness matrix tKT and global internal force vector tF of the structure.

4. Stiffness design

4.1. Objective function and structural performance criteria

To find the stiffest design, the natural choice is to minimize the deflection or compliance. However,
the drawback of this objective function is that it may result in structures that can only support the
maximum load for which they are designed andmay break down for lower loads (Buhl, Pedersen, and
Sigmund 2000). To avoid this, when the nonlinear structure is loaded under force control, the com-
plementary workWC can be chosen as the objective function (Figure 5). In this case, the optimization
problem can be defined as:

Minimize : f (x) = WC = lim
n→∞

1
2

n∑
i=1

�RT(Ui − Ui−1)

subject to :
n∑

e=1
vse = Vc

(26)

where �R is the load increment, i denotes the increment number, and n is the total number of load
increments.

The sensitivity of the objective functions with respect to design variable xe is:

Se = ∂f (x)
∂xe

= lim
n→∞

1
2

n∑
i=1

(RTi − RTi−1)

(
∂Ui

∂xe
− ∂Ui−1

∂xe

)
(27)

Tofind the elemental sensitivities, an adjoint equationwas introduced to the above equation by adding
a series of Lagrangian multipliers to the objective function (Buhl, Pedersen, and Sigmund 2000).
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Figure 5. Objective functionWC for stiffness optimization of nonlinear structures under force control.

Solving the above equation, the elemental sensitivity numbers for nonlinear structures under force
control are obtained as the total elemental elastic and plastic strain energy, Ene (Huang and Xie 2010).
This can be used in BESO as the criterion for element removal and addition to find the solution for
stiffness optimization of nonlinear structures. Similarly, in the Iso-XFEM optimization method, the
elemental sensitivity numbers can be used to find the structural performance:

SPe = Ene
Ve

(28)

4.2. Filter scheme for Iso-XFEM

To increase the stability of the Iso-XFEMmethod applied to geometrically nonlinear problems, a sim-
ilar filter scheme to the one used for BESO (Huang and Xie 2010) and SIMP (Sigmund 2001) can be
employed.Here, the purpose of the filter is to smooth the structural performance distribution over the
design domain by averaging the nodal values of structural performance with those of neighbouring
nodes. The modified values of structural performance can then be defined by

SPi =
∑k

j=1 wijSPj∑k
j=1 wij

(29)

where k is the number of nodes inside a domain centred at node i having a filter radius of rmin, and
wij are the weighting factors defined by

wij = rmin − rij (30)

where rij is the distance between node i and the neighbouring node j.

4.3. Iso-XFEM procedure for geometrically nonlinear structures

The Iso-XFEM procedure for stiffness design of geometrically nonlinear structures can be summa-
rized as the following steps, as also illustrated in Figure 6.

• Initialize: define the design space, non-design domain, material properties, a fixed grid FE mesh,
loads and boundary conditions, and the optimization parameters.

• Perform nonlinear finite element analysis (FEA): divide the applied load into a suitable number
of load increments and find the equilibrium path using the Newton–Raphson approach. Find the
properties of the boundary elements using the XFEM scheme.

• Calculate the elemental values of total strain energy and find the structural performance distribu-
tion over the design domain.
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Figure 6. Flowchart of the extended finite elementmethod using isolines/isosurfaces (Iso-XFEM) for geometrically nonlinear struc-
tures. XFEM = extended finite elementmethod; FEA = finite element analysis; SE = strain energy; SP = structural performance.

• Filter structural performance numbers.
• Average the structural performance numbers with those of the previous iteration.
• Calculate the target volume of the current iteration and find a minimum level of performance to

meet the target volume.
• Find the relative performance, α, over the design domain and extract the design boundary. Assign

solid material properties to regions having α > 0 and void material properties to the regions
having α < 0.

• If the convergence condition is reached, stop the design process; else, go to Step 2.
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5. Examples

5.1. Test case 1: nonlinear cantilever plate

The cantilever plate shown in Figure 7 was considered as the first test case of this study. This beam has
been used as a test case in previous studies, implementing SIMP (Buhl, Pedersen, and Sigmund 2000)
and BESO (Huang and Xie 2010), allowing comparison of the Iso-XFEM solutions with the other
two methods. The cantilever plate was 1m in length, 0.25m in width and 0.1m in thickness, and was
subjected to a concentrated load at the middle of the free end. The material used was nylon, which
has a Young’s modulus of E = 3GPa and Poisson’s ratio of v = 0.4. Nonlinear, stiffness-optimized
designs of the plate with a volume constraint of 50% of the design domain under two point loads
60 kN and 144 kN were investigated and compared. A mesh of 200× 50 quadrilateral elements was
used for the FE model of the structure. A relatively low evolution rate of ER = 0.005 was used to
increase the stability of the nonlinear Iso-XFEMmethod by performing the material removal within
a higher number of evolutionary iterations, i.e. applying less change to the topology at each iter-
ation. A filter radius of rmin = 1.2 times the element size was used. The reason for using a small
filter radius was to stabilize the evolutionary process without significantly changing the complexity
of the solutions.

Figure 8 shows the evolution histories of the objective function (WC) and volume fraction for
both load cases, 60 kN and 144 kN. It can be seen that the evolutionary optimization process of the
nonlinear structure subjected to the point load of 60 kN (Figure 8(a)) has good stability. However, by
increasing the load to 144 kN (Figure 8(b)), i.e. increasing the degree of nonlinearity, some insta-
bility was observed in the plot of complementary work (iteration 70 afterwards). Figure 9 shows
the solutions obtained from the linear and nonlinear optimization for the two different load val-
ues. Note that linear Iso-XFEM solutions for both load cases are the same when the same target
volume fraction is used. It can be seen that the linear Iso-XFEM has converged to a symmetrical
solution. This is expected as the design is optimized with respect to the equilibrium geometry of the
undeformed beam. However, different designs are obtained by implementing the nonlinear topology
design, showing that the optimal topologies depend on the magnitude of the applied load. These are
now non-symmetrical as the design is optimized for the deformed beam under load, which is not
symmetrical. The large deformation of the Iso-XFEM solutions is illustrated in Figure 10. Table 1
compares the objective values (complementary works) of the linear and nonlinear Iso-XFEM solu-
tions with those previously investigated using SIMP (Buhl, Pedersen, and Sigmund 2000) and BESO
(Huang and Xie 2010), implementing the same objective function. It can be seen that the nonlinear
designs obtained from both Iso-XFEM designs have lower magnitudes of complementary work than
their linear designs, indicating a better performance for the load for which they are designed. Also
comparing the Iso-XFEM with BESO and SIMP solutions in terms of their complementary work, it
can be seen that the Iso-XFEM solutions have lower magnitudes of complementary work than the
BESO and SIMP solutions, showing better performance of the Iso-XFEM solutions owing to their
smooth boundary representation. The slightly higher complementary work of the SIMP solutions
compared to the BESO solutions was attributed to the effect of intermediate-density elements in SIMP

Figure 7. Design domain and boundary conditions of the geometrically nonlinear cantilever plate.
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Figure 8. Evolution histories of the objective function and volume fraction of the nonlinear cantilever subjected to a point load of
(a) 60 kN, and (b) 144 kN.

Table 1. Comparison of the complementary works of linear and nonlinear designs for test case 1.

Complementary work Design for F = 60 kN Design for F = 140 kN

Linear design from Iso-XFEM 2.107 kJ 12.072 kJ
Nonlinear design from Iso-XFEM 2.101 kJ 12.063 kJ
Nonlinear design from BESO (Huang and Xie 2010) 2.171 kJ 12.38 kJ
Nonlinear design from SIMP (Buhl, Pedersen, and Sigmund 2000) 2.331 kJ 13.29 kJ

Note: Iso-XFEM = topology optimization using isolines/isosurfaces and extended finite element method; BESO = bidirectional
evolutionary structural optimization; SIMP = solid isotropic material with penalization.

solutions, where their strain energy may have been overestimated (Huang and Xie 2010). This can-
tilever problem has also been studied for compliance minimization (Buhl, Pedersen, and Sigmund
2000; He, Kang, and Wang 2014). In this case, a different solution with a tail member was reported.
However, as pointed out by Buhl, Pedersen, and Sigmund (2000) andHuang and Xie (2010), the solu-
tions achieved from minimizing compliance may not support a load lower than the maximum load
for which they are designed.

The test case presented in this section shows that by using nonlinear FE modelling in the Iso-
XFEMmethod, a different solutionwith a higher performance than the linear design can be achieved.
However, it could be argued that the difference in the overall topology of the linear and nonlinear
solutions of this test case was insufficient to justify the extra effort of the nonlinear analysis. As will
be shown in the next example, in some cases the difference can be extremely large and can make the
use of nonlinear modelling essential.

5.2. Test case 2: slender beam

The purpose of this experiment was to apply the Iso-XFEM method to the topology optimization
of a structure having snap-through buckling effects, i.e. a transition between two stable states in a
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Figure 9. Extended finite element method using isolines/isosurfaces (Iso-XFEM) solutions of the large-displacement cantilever
problem: (a) linear design (for both load cases of 60 kN and 144 kN); (b) nonlinear design for a point load of 60 kN; (c) nonlinear
design for a point load of 144 kN.

Figure 10. Illustrationof the largedeformationof the cantilever plate: (a) cantilever subjected to apoint loadof 60 kN; (b) cantilever
subjected to a point load of 144 kN. The deformations are to scale.

structure. In this type of problem, radically different topologies can be obtained using linear and
nonlinear modelling in the structural optimization problem. As an example of a structure involv-
ing snap-through effects, the topology optimization of a slender beam with the design domain and
boundary conditions shown in Figure 11 was considered. The beam was 8m long, 1m deep and
100 cm thick. A load of 400 kN was applied to the centre of the top edge The material properties of
the beam were a Young’s modulus of E = 3GPa and Poisson’s ratio of v = 0.4. Nonlinear and lin-
ear stiffness-optimized designs of the beam for a volume constraint of 20% of the design domain for
downward and upward loads were investigated. A mesh of 320× 40 quadrilateral elements was used
for the FE model of the structure in all the experiments, and a volume evolution rate of ER = 0.01
and a filter radius of rmin = 1.2 times the element size were used as optimization parameters.

Figure 12 compares the nonlinear Iso-XFEM solutions of the beam subjected to downward
(Figure 12(a)) and upward (Figure 12(b)) loads with the linear Iso-XFEM solution (Figure 12(c)).
With the linear modelling, the same solution is obtained for the structure subjected to either an
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Figure 11. Design domain andboundary conditions of the geometrically nonlinear slender beamof test case 2: (a) beam subjected
to downward load; (b) beam subjected to upward load.

Figure 12. (a) Nonlinear design of the beam subjected to a downward load; (b) nonlinear design of the beam subjected to an
upward load; (c) linear design of the beam (for both downward load and upward load cases).

upward or a downward load, i.e. the magnitude of the load does not change the solution in a linear
topology optimization implementation. However, it can be seen that, using the nonlinear topology
design approach, very different solutions are obtained for upward and downward loads. It can also be
seen in Figure 12 that the solution for the upward load case is very similar to the linear solution. This
can be explained by looking at the deformations of the various designs under load.
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Figure 13. (a) Displacement of solution shown in Figure 12(a); (b) displacement of solution shown in Figure 12(b); (c) displacement
of solution shown in Figure 12(c) subjected to downward load; (d) displacement of solution shown in Figure 12(c) subjected to
upward load. The deformations are to scale.

Figure 13 shows the deflection of the nonlinear and linear topology optimization solutions of the
beam, subjected to both upward and downward loads. The deflection of both nonlinear and linear
solutions was determined using geometrically nonlinear FEA for this comparison. It can be seen that
the solution of the nonlinear design subjected to the downward load remains stable after applying the
specified load for which it is designed (Figure 13(a)). However, the linear design has become distorted
under the prescribed downward load (Figure 13(c)), which can be attributed to the buckling effects
(Buhl, Pedersen, and Sigmund 2000). This is because the linear solution of Figure 12(c) has two thin
members in the middle which are put under compression with the downward load. Although this
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Table 2. Comparison of the complementary works of nonlinear and linear designs for test case 2.

Complementary work Design for downward load Design for upward load

Nonlinear design from Iso-XFEM 38.700 kJ 36.492 kJ
Linear design from Iso-XFEM 55.548 kJ 36.494 kJ

Note: Iso-XFEM = topology optimization using isolines/isosurfaces and extended finite element method.

is not an issue when linear modelling is used, with nonlinear modelling the thin compressed beams
buckle and the whole structure experiences snap-through, as seen in Figure 13(c). The snap-through
effectwas not an issue for the upward loading as the thin strutswere not put under compression, hence
the similarity of the linear and nonlinear designs for upward loading (Figure 13(b) and (d)). Table 2
compares the complementary works of the solutions subjected to downward and upward loads. As
anticipated, the difference between the complementary works of nonlinear and linear solutions for
the upward load case is not significant. However, in the case of the downward load case, the comple-
mentary work of the linear design involving buckling and snap-through effects is much higher than
for the nonlinear one, showing the importance of implementing a nonlinear topology optimization
approach for large-displacement problems such as those involving snap-through effects.

5.3. Further remarks on the efficiency of the proposedmethod

The test cases studied in this article showed how the Iso-XFEM method can benefit from nonlin-
ear modelling, especially when the method is applied to problems with a high degree of geometric
nonlinearity. However, it should be noted that the computational cost of optimization significantly
increases when nonlinear modelling is used. For example, in test case 1, the time cost of the opti-
mization with linear modelling was 3020 s for 100 iterations. Using the same desktop computer for
the analysis, the corresponding time cost for optimization of the cantilever under 140 kN load with
nonlinear modelling was 15,895 s for 100 iterations. The increased computational cost of nonlinear
modelling can become problematic when applying the method to 3D problems with a high num-
ber of FEs. However, compared to conventional element-based methods of topology optimization,
an advantage of the Iso-XFEM method is that it requires fewer elements to return a high-resolution
solution, thus saving on the computational cost of the optimization (Abdi, Wildman, and Ashcroft
2014; Abdi, Ashcroft, and Wildman 2014).

The formulation adopted in this article was based on the assumption that the structure undergoes
large deformation with small strains. However, if the strains are large or if the material behaviour is
nonlinear, different formulations will be required for the nonlinear modelling. The test cases studied
in this article (cantilever beam and slender beam) are frequently used benchmark problems within
the topology optimization community, allowing the comparison of Iso-XFEM solutions with the
solutions from previously developed methods such as SIMP and BESO. Moreover, cantilever and
slender beam members exist in many engineering applications, from microscale parts, e.g. atomic
force microscope cantilevers and micro-electromechanical system cantilevers/beams, to large struc-
tures, e.g. bridges and civil structures. The application of themethod to real problemsmay require the
definition of alternative objective functions and the derivation of appropriate sensitivities. Examples
are the design of compliant mechanisms, where the objective can be to maximize the output defor-
mation, and the design of energy absorption structures, where the objective may be to maximize the
total absorbed energy.

6. Summary and conclusions

In this study, the topology optimization of geometrically nonlinear structures was investigated,
assuming that the structures undergo large displacement with small strain. The Iso-XFEM method
was extended to enable the generation of high-resolution topology optimized solutions for geomet-
rically nonlinear structures. A total Lagrangian FE formulation was used to model the geometrically
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nonlinear behaviour of continuum structures and a Newton–Raphson iterative method was used to
find the equilibrium solution at each load increment. The nonlinear FE code developed for 2D struc-
tureswas then integrated into the Iso-XFEMmethod to enable the topology optimization of structures
undergoing large deformation. A filter scheme was used in the method to increase the stability of the
evolutionary optimization approach applied to nonlinear structures.

The topology optimization results achieved by implementing linear and nonlinear modelling
showed that, for the presented test cases, a nonlinear-based optimization returns solutions that are
dependent on the magnitude of the load. In addition, the solutions achieved from the optimization
using nonlinear modelling have a higher performance than those with linear modelling. Although in
the first test case of this study, there is not a significant difference between the solutions achieved from
linear and nonlinear modelling, the results from the second test case, which involves snap-through
effects, showed the importance of implementing nonlinear modelling in large-displacement prob-
lems. As the solutions achieved from the proposed method are represented with clearly defined and
smooth boundaries, the time-consuming post-processing stage before manufacturing can be elimi-
nated. This makes the method suitable for the stiffness design of digitally manufactured structures,
e.g. 3D printed structures, which experience large deformation.
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