3,335 research outputs found

    Targeted genetic testing for familial hypercholesterolaemia using next generation sequencing:a population-based study

    Get PDF
    Background<p></p> Familial hypercholesterolaemia (FH) is a common Mendelian condition which, untreated, results in premature coronary heart disease. An estimated 88% of FH cases are undiagnosed in the UK. We previously validated a method for FH mutation detection in a lipid clinic population using next generation sequencing (NGS), but this did not address the challenge of identifying index cases in primary care where most undiagnosed patients receive healthcare. Here, we evaluate the targeted use of NGS as a potential route to diagnosis of FH in a primary care population subset selected for hypercholesterolaemia.<p></p> Methods<p></p> We used microfluidics-based PCR amplification coupled with NGS and multiplex ligation-dependent probe amplification (MLPA) to detect mutations in LDLR, APOB and PCSK9 in three phenotypic groups within the Generation Scotland: Scottish Family Health Study including 193 individuals with high total cholesterol, 232 with moderately high total cholesterol despite cholesterol-lowering therapy, and 192 normocholesterolaemic controls.<p></p> Results<p></p> Pathogenic mutations were found in 2.1% of hypercholesterolaemic individuals, in 2.2% of subjects on cholesterol-lowering therapy and in 42% of their available first-degree relatives. In addition, variants of uncertain clinical significance (VUCS) were detected in 1.4% of the hypercholesterolaemic and cholesterol-lowering therapy groups. No pathogenic variants or VUCS were detected in controls.<p></p> Conclusions<p></p> We demonstrated that population-based genetic testing using these protocols is able to deliver definitive molecular diagnoses of FH in individuals with high cholesterol or on cholesterol-lowering therapy. The lower cost and labour associated with NGS-based testing may increase the attractiveness of a population-based approach to FH detection compared to genetic testing with conventional sequencing. This could provide one route to increasing the present low percentage of FH cases with a genetic diagnosis

    Primary care management for optimized antithrombotic treatment [PICANT]: study protocol for a cluster-randomized controlled trial

    Get PDF
    Background: Antithrombotic treatment is a continuous therapy that is often performed in general practice and requires careful safety management. The aim of this study is to investigate whether a best practice model that applies major elements of case management, including patient education, can improve antithrombotic management in primary health care in terms of reducing major thromboembolic and bleeding events. Methods: This 24-month cluster-randomized trial will be performed in 690 adult patients from 46 practices. The trial intervention will be a complex intervention involving general practitioners, health care assistants and patients with an indication for oral anticoagulation. To assess adherence to medication and symptoms in patients, as well as to detect complications early, health care assistants will be trained in case management and will use the Coagulation-Monitoring-List (Co-MoL) to regularly monitor patients. Patients will receive information (leaflets and a video), treatment monitoring via the Co-MoL and be motivated to perform self-management. Patients in the control group will continue to receive treatment-as-usual from their general practitioners. The primary endpoint is the combined endpoint of all thromboembolic events requiring hospitalization, and all major bleeding complications. Secondary endpoints are mortality, hospitalization, strokes, major bleeding and thromboembolic complications, severe treatment interactions, the number of adverse events, quality of anticoagulation, health-related quality of life and costs. Further secondary objectives will be investigated to explain the mechanism by which the intervention is effective: patients' assessment of chronic illness care, self-reported adherence to medication, general practitioners' and health care assistants' knowledge, patients' knowledge and satisfaction with shared decision making. Practice recruitment is expected to take place between July and December 2012. Recruitment of eligible patients will start in July 2012. Assessment will occur at three time points: baseline (T0), follow-up after 12 (T1) and after 24 months (T2). Discussion: The efficacy and effectiveness of individual elements of the intervention, such as antithrombotic interventions, self-management concepts in orally anticoagulated patients and the methodological tool, case-management, have already been extensively demonstrated. This project foresees the combination of several proven instruments, as a result of which we expect to profit from a reduction in the major complications associated with antithrombotic treatment

    Gene Function Classification Using Bayesian Models with Hierarchy-Based Priors

    Get PDF
    We investigate the application of hierarchical classification schemes to the annotation of gene function based on several characteristics of protein sequences including phylogenic descriptors, sequence based attributes, and predicted secondary structure. We discuss three Bayesian models and compare their performance in terms of predictive accuracy. These models are the ordinary multinomial logit (MNL) model, a hierarchical model based on a set of nested MNL models, and a MNL model with a prior that introduces correlations between the parameters for classes that are nearby in the hierarchy. We also provide a new scheme for combining different sources of information. We use these models to predict the functional class of Open Reading Frames (ORFs) from the E. coli genome. The results from all three models show substantial improvement over previous methods, which were based on the C5 algorithm. The MNL model using a prior based on the hierarchy outperforms both the non-hierarchical MNL model and the nested MNL model. In contrast to previous attempts at combining these sources of information, our approach results in a higher accuracy rate when compared to models that use each data source alone. Together, these results show that gene function can be predicted with higher accuracy than previously achieved, using Bayesian models that incorporate suitable prior information

    Measurement of Aerosols at the Pierre Auger Observatory

    Full text link
    The air fluorescence detectors (FDs) of the Pierre Auger Observatory are vital for the determination of the air shower energy scale. To compensate for variations in atmospheric conditions that affect the energy measurement, the Observatory operates an array of monitoring instruments to record hourly atmospheric conditions across the detector site, an area exceeding 3,000 square km. This paper presents results from four instruments used to characterize the aerosol component of the atmosphere: the Central Laser Facility (CLF), which provides the FDs with calibrated laser shots; the scanning backscatter lidars, which operate at three FD sites; the Aerosol Phase Function monitors (APFs), which measure the aerosol scattering cross section at two FD locations; and the Horizontal Attenuation Monitor (HAM), which measures the wavelength dependence of aerosol attenuation.Comment: Contribution to the 30th International Cosmic Ray Conference, Merida Mexico, July 2007; 4 pages, 4 figure

    Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016.

    Get PDF
    OBJECTIVE: To provide an update to "Surviving Sepsis Campaign Guidelines for Management of Sepsis and Septic Shock: 2012." DESIGN: A consensus committee of 55 international experts representing 25 international organizations was convened. Nominal groups were assembled at key international meetings (for those committee members attending the conference). A formal conflict-of-interest (COI) policy was developed at the onset of the process and enforced throughout. A stand-alone meeting was held for all panel members in December 2015. Teleconferences and electronic-based discussion among subgroups and among the entire committee served as an integral part of the development. METHODS: The panel consisted of five sections: hemodynamics, infection, adjunctive therapies, metabolic, and ventilation. Population, intervention, comparison, and outcomes (PICO) questions were reviewed and updated as needed, and evidence profiles were generated. Each subgroup generated a list of questions, searched for best available evidence, and then followed the principles of the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) system to assess the quality of evidence from high to very low, and to formulate recommendations as strong or weak, or best practice statement when applicable. RESULTS: The Surviving Sepsis Guideline panel provided 93 statements on early management and resuscitation of patients with sepsis or septic shock. Overall, 32 were strong recommendations, 39 were weak recommendations, and 18 were best-practice statements. No recommendation was provided for four questions. CONCLUSIONS: Substantial agreement exists among a large cohort of international experts regarding many strong recommendations for the best care of patients with sepsis. Although a significant number of aspects of care have relatively weak support, evidence-based recommendations regarding the acute management of sepsis and septic shock are the foundation of improved outcomes for these critically ill patients with high mortality

    Subanesthetic ketamine treatment promotes abnormal interactions between neural subsystems and alters the properties of functional brain networks

    Get PDF
    Acute treatment with subanesthetic ketamine, a non-competitive N-methyl-D-aspartic acid (NMDA) receptor antagonist, is widely utilized as a translational model for schizophrenia. However, how acute NMDA receptor blockade impacts on brain functioning at a systems level, to elicit translationally relevant symptomatology and behavioral deficits, has not yet been determined. Here, for the first time, we apply established and recently validated topological measures from network science to brain imaging data gained from ketamine-treated mice to elucidate how acute NMDA receptor blockade impacts on the properties of functional brain networks. We show that the effects of acute ketamine treatment on the global properties of these networks are divergent from those widely reported in schizophrenia. Where acute NMDA receptor blockade promotes hyperconnectivity in functional brain networks, pronounced dysconnectivity is found in schizophrenia. We also show that acute ketamine treatment increases the connectivity and importance of prefrontal and thalamic brain regions in brain networks, a finding also divergent to alterations seen in schizophrenia. In addition, we characterize how ketamine impacts on bipartite functional interactions between neural subsystems. A key feature includes the enhancement of prefrontal cortex (PFC)-neuromodulatory subsystem connectivity in ketamine-treated animals, a finding consistent with the known effects of ketamine on PFC neurotransmitter levels. Overall, our data suggest that, at a systems level, acute ketamine-induced alterations in brain network connectivity do not parallel those seen in chronic schizophrenia. Hence, the mechanisms through which acute ketamine treatment induces translationally relevant symptomatology may differ from those in chronic schizophrenia. Future effort should therefore be dedicated to resolve the conflicting observations between this putative translational model and schizophrenia

    Assessing the causal association of glycine with risk of cardio-metabolic diseases

    Get PDF
    Circulating levels of glycine have previously been associated with lower incidence of coronary heart disease (CHD) and type 2 diabetes (T2D) but it remains uncertain if glycine plays an aetiological role. We present a meta-analysis of genome-wide association studies for glycine in 80,003 participants and investigate the causality and potential mechanisms of the association between glycine and cardio-metabolic diseases using genetic approaches. We identify 27 genetic loci, of which 22 have not previously been reported for glycine. We show that glycine is genetically associated with lower CHD risk and find that this may be partly driven by blood pressure. Evidence for a genetic association of glycine with T2D is weaker, but we find a strong inverse genetic effect of hyperinsulinaemia on glycine. Our findings strengthen evidence for a protective effect of glycine on CHD and show that the glycine-T2D association may be driven by a glycine-lowering effect of insulin resistance
    corecore