5,546 research outputs found

    Collinear versus non-collinear magnetic order in Pd atomic clusters: ab-initio calculations

    Full text link
    We present a thorough theoretical assessment of the stability of non-collinear spin arrangements in small palladium clusters. We generally find that ferromagnetic order is always preferred, but that antiferromagnetic and non-collinear configurations of different sorts exist and compete for the first excited isomers. We also show that the ground state is insensitive to the choice of atomic configuration for the pseudopotential used and to the approximation taken for the exchange and correlation potential. Moreover, the existence and relative stability of the different excited configurations also depends weakly on the approximations employed. These results provide strong evidence on the transferability of pseudopotential and exchange and correlation functionals for palladium clusters as opposed to the situation found for the bulk phases of palladium.Comment: 5 pages, 4 figure

    Fast connected component labeling algorithm: a non voxel-based approach

    Get PDF
    This paper presents a new approach to achieve connected component labeling on both binary images and volumes by using the Extreme Vertices Model (EVM), a representation model for orthogonal polyhedra, applied to digital images and volume datasets recently. In contrast with previous techniques, this method does not use a voxel-based approach but deals with the inner sections of the object.Postprint (published version

    Clock spectroscopy of interacting bosons in deep optical lattices

    Full text link
    We report on high-resolution optical spectroscopy of interacting bosonic 174^{174}Yb atoms in deep optical lattices with negligible tunneling. We prepare Mott insulator phases with singly- and doubly-occupied isolated sites and probe the atoms using an ultra-narrow "clock" transition. Atoms in singly-occupied sites undergo long-lived Rabi oscillations. Atoms in doubly-occupied sites are strongly affected by interatomic interactions, and we measure their inelastic decay rates and energy shifts. We deduce from these measurements all relevant collisional parameters involving both clock states, in particular the intra- and inter-state scattering lengths

    Non-linear Relaxation of Interacting Bosons Coherently Driven on a Narrow Optical Transition

    Full text link
    We study the dynamics of a two-component Bose-Einstein condensate (BEC) of 174^{174}Yb atoms coherently driven on a narrow optical transition. The excitation transfers the BEC to a superposition of states with different internal and momentum quantum numbers. We observe a crossover with decreasing driving strength between a regime of damped oscillations, where coherent driving prevails, and an incoherent regime, where relaxation takes over. Several relaxation mechanisms are involved: inelastic losses involving two excited atoms, leading to a non-exponential decay of populations; Doppler broadening due to the finite momentum width of the BEC and inhomogeneous elastic interactions, both leading to dephasing and to damping of the oscillations. We compare our observations to a two-component Gross-Pitaevskii (GP) model that fully includes these effects. For small or moderate densities, the damping of the oscillations is mostly due to Doppler broadening. In this regime, we find excellent agreement between the model and the experimental results. For higher densities, the role of interactions increases and so does the damping rate of the oscillations. The damping in the GP model is less pronounced than in the experiment, possibly a hint for many-body effects not captured by the mean-field description.Comment: 7 pages, 4 figures; supplementary material available as ancillary fil

    Magneto--thermal evolution of neutron stars

    Full text link
    We study the mutual influence of thermal and magnetic evolution in a neutron star's crust in axial symmetry. Taking into account realistic microphysical inputs, we find the heat released by Joule effect consistent with the circulation of currents in the crust, and we incorporate its effects in 2D cooling calculations. We solve the induction equation numerically using a hybrid method (spectral in angles, but a finite--differences scheme in the radial direction), coupled to the thermal diffusion equation. We present the first long term 2D simulations of the coupled magneto-thermal evolution of neutron stars. This substantially improves previous works in which a very crude approximation in at least one of the parts (thermal or magnetic diffusion) has been adopted. Our results show that the feedback between Joule heating and magnetic diffusion is strong, resulting in a faster dissipation of the stronger fields during the first million years of a NS's life. As a consequence, all neutron stars born with fields larger than a critical value (about 5 10^13 G) reach similar field strengths (approximately 2-3 10^{13} G) at late times. Irrespectively of the initial magnetic field strength, after 10610^6 years the temperature becomes so low that the magnetic diffusion timescale becomes longer than the typical ages of radio--pulsars, thus resulting in apparently no dissipation of the field in old NS. We also confirm the strong correlation between the magnetic field and the surface temperature of relatively young NSs discussed in preliminary works. The effective temperature of models with strong internal toroidal components are systematically higher than those of models with purely poloidal fields, due to the additional energy reservoir stored in the toroidal field that is gradually released as the field dissipates.Comment: 10 pages, 5 figures, accepted for publication in A&

    Low-cost technology for the integration of micro- and nanochips into fluidic systems on printed circuit board: fabrication challenges

    Get PDF
    Nowadays, micro- and nanochips are usually\ud fabricated with Silicon and/or glass. A simple, low-cost and\ud reliable integration packaging method that provides flexibility\ud to the incorporation of electronic and fluidic devices into a\ud system has not been fully developed yet. The use of Printed\ud Circuit Board material as substrate to create dry film resist\ud microfluidic channels is the core technology to provide such an\ud integration method. The feasibility and potential of the\ud proposed packaging method is demonstrated in this wor

    Revisiting neutron starquakes caused by spin-down

    Full text link
    Pulsars show a steady decrease in their rotational frequency, occasionally interrupted by sudden spin-ups called glitches, whose physical origin is still a mystery. One suggested explanation for at least the small glitches are starquakes, that is, failures of the solid neutron star crust, in which the progressive reduction in the centrifugal force deforms the star, stressing the solid until it breaks. This produces a spin-up, dissipating energy inside the star. We analyze the deformations produced by the decreasing centrifugal force, modeling the star with a fluid core and a solid crust, each with uniform density and with the core possibly denser than the crust, as a simple approximation to the strong density gradient present in real neutron stars. The deformation is qualitatively different from the previously studied case of equal densities. The former more closely resembles the behavior of a fluid star, in which the core-crust interface is a surface of constant gravitational plus centrifugal potential. Regardless of the uncertain breaking strain, the glitch activity in this model is several orders of magnitude smaller than observed, even if only small glitches are considered. For a large breaking strain, suggested by simulations, glitches due to starquakes could be roughly of the correct size but much less frequent than observed glitches. The energy released in each glitch is much larger than in the model of angular momentum transfer from a faster rotating superfluid in the inner crust. On the other hand, we cannot rule out that the heating produced by small starquakes could trigger glitches by allowing neutron superfluid vortices to move. We also confirm that stresses in the neutron star crust can in principle support an ellipticity much larger than some observational upper limits from pulsar timing and continuous gravitational wave searches.Comment: 17 pages, 11 figure

    Corrección de consolidación viciosa diafisaria de fémur: osteotomía en caparazón. A propósito de dos casos.

    Get PDF
    La adecuada alineación del miembro inferior es esencial para el adecuado reparto de cargas que permita una deambulación sin alteraciones. Por lo que a la hora del tratamiento de fracturas de huesos largos del miembro inferior, fundamentalmente fémur y tibia, habrå que evitar cualquier deformidad angular que a medio plazo provoque fenómenos degenerativos en las articulaciones adyacentes. Se presentan dos casos clínicos complejos, en los que se corrigieron sendas consolidaciones viciosas de fracturas diafisarias de fémur satisfactoriamente, mediante osteotomía tipo caparazón o clamshellThe lower limb alignment is essential to share correctly the bearing weight of the body to allow a suitable gait. We should take it into account when treating femoral and tibial diaphyseal fractures, in order to avoid angular deformities which could lead to degenerative changes in adjacent joints. We report two complex cases, with femoral shaft malunions corrected satisfactorily by using a clamshell osteotom
    • 

    corecore