Fast Connected Component Labeling Algorithm: A non voxel-based

approach

D. Ayala

J. Rodriguez*

Universitat Politecnica de Catalunya, Barcelona (Spain)
{dolorsa,jrodri}@lsi.upc.es
A. Aguilera
Universidad de las Américas-Puebla, Puebla (México)
Email: aguilera@mail.udlap.mx

Abstract

This paper presents a new approach to achieve connected component labeling on both binary images and
volumes by using the Extreme Vertices Model (EVM), a representation model for orthogonal polyhedra,
applied to digital images and volume datasets recently. In contrast with previous techniques, this method
does not use a vozel-based approach but deals with the inner sections of the object. This approach allows
us to build data size-independent algorithms and work with volumes from range data or solid modeling
field indistinctly. Our proposal, also can be applied to manifold as well as non-manifold data. The
algorithm actually detects non-manifold zones and permits to break or not the objects at these zonmes by

an user-specified parameter.

Keywords

Connected component labeling, volume visualization, image understanding.

1. Introduction

Connected components labeling (CCL) of an im-
age is a fundamental step in the segmentation process
and consists in identifying and labeling the separate
different regions of interest of the image [RP66]. This
operation has applications in the fields of image under-
standing, volume visualization, character recognition,
geometric modeling and computer vision. In partic-
ular, we have developed it as a part of a major set
of operations to edit and manipulate volume datasets
from its EVM-representation. In this context, CCL
is useful to identify and separate equal-density parts
from a greylevel range data like acquired from medical

*This author has been supported by a grant from FONACIT
(Venezuelan Council of Research in Science and Technology)

imaging devices .

Algorithms for 2D images have been developed be-
cause, traditionally, data have been obtained as a se-
quence of 2D slices. However nowadays direct 3D ac-
quisition is becoming more available and consequently
direct 3D techniques are necessary.

A great diversity of strategies have been devised
to solve this problem: from hardware based solutions
[Nic95] to methods using optimization techniques.
There are also algorithms that simultaneously per-
form surface tracking and connected-component la-
beling [UA91]. However the strategy followed by most
developed approaches is based on using a more suit-
able representation instead of the raw data, in order
to improve the corresponding algorithms. In 2D, rep-
resentations such as run-length and quadtrees [Sam81]

among others have been proposed.

In 3D there has also been an effort to develop
new representations for the data. The semibound-
ary [UO91], created to store a segmented volume, has
become a very useful model in fast visualization, ma-
nipulation and analysis of structures generated from
volume data and in Thurfjell et al’s work [TBN95]
a model based on the semiboundary is used for per-
forming erosion, dilation and connected component
labeling for 3D volume datasets.

Dillencourt, Samet and Tamminen [DST92] for-
malized a general approach for connected component
labeling which can deal with d-dimensional images
represented in several data structures such as arrays,
quadtrees and bintrees. Finally, in Oikarinem et al’s
article [OJH99] an algorithm for volume rendering us-
ing seed filling and supporting cut planes (restricted to
orthogonal planes) is presented. The algorithm does
a 2D connected component search on the cut plane
within the volume dataset in order to find seed points,
which is based on Dillencourt et al’s previous work
[DST92].

Almost all of these approaches are voxel-based and
therefore their performance decreases as the number
of voxels of the image increases.

In this paper we present a new approach for con-
nected component labeling based also on an specific
representation of the data. We use the EVM which
has been proved to be a useful model for binary data
[JDO1]. From the object’s EVM we obtain, in a natu-
ral way, a particular kind of spatial partitioning of the
object as an ordered union of disjoint boxes (OUDB).
Then we apply, onto this set of boxes, an algorithm
which follows the basic two-pass strategy first intro-
duced by Rosenfeld and Pfaltz [RP66].

The presented approach works in identical way for
images and volume datasets and it is size-independent.
In contrast with previous techniques, it does not use
a voxel-based approach but deals with the inner sec-
tions of the object. The used model EVM is suitable
for manifold as well as non-manifold data and the pre-
sented algorithm can detect non-manifold regions and
permits to break or not the objects at these zones.

The paper is arranged as follows. Next section in-
cludes a review of the EVM in which we give the def-
initions and properties necessary to understand this
work and comments the main results that we have
obtained using this model in the field of volume visu-
alization. Section three presents our connected com-
ponent labeling algorithm, explaining how to obtain

the OUDB partition and the connected boxes algo-
rithm. Next, section four shows its performance by
discussing experimental results. Finally, the last sec-
tion concludes the paper and outlines future work.

2. Review of the EVM

Orthogonal polyhedra (OP) are polyhedra with
all their faces oriented in three orthogonal directions.
Orthogonal Pseudo-polyhedra (OPP) is a more gen-
eral term which refers to regular and orthogonal poly-
hedra with a possible non-manifold boundary. Fig-
ure 1 shows an OPP with a non-manifold vertex and
three non-manifold edges. Binary images and volume
data sets are regular grids of samples defining orthog-
onal shapes. Latecki [Lat97] defines the term well-
composed for 3D images and relates it to the manifold
concept. So we can say that the continuous analog of
a well-composed (non well-composed) image is an OP
(OPP).

The Extreme Vertices Model (EVM) is a very con-
cise model in which any OPP can be described using
only a subset of its vertices. The EVM is actually a
complete (non-ambiguous) solid model. In this paper
we use the EVM to represent images and volume data
sets.

Definitions

Let P be an OPP. A brink is the maximal unin-
terrupted segment built out of a sequence of collinear
and contiguous two-manifold edges of P. The ending
vertices of a brink are called extreme vertices (EV).
See Figure 1. The EVM is a model in which any OPP
is described by its (and only its) set of EV.

A plane of vertices (plv) is the set of vertices ly-
ing on a plane perpendicular to a main axis of P. A
slice is the region between two consecutive planes of
vertices. A section (S) is the resulting polygon from
the intersection between P and an orthogonal plane.
Each slice has its representing section. See Figure 1.

All these definitions can be extended to any di-
mension [BMP99]. In this paper we are concerned
with dimension < 3. Planes of vertices and sections
obtained from a 3D object are, then, 2D orthogonal
polygons. From them, we can obtain their 1D lines of
vertices and their 2D slices with their corresponding
1D sections. Finally, lines of vertices and 1D sections
are 1D objects which are composed of one or several
brinks.

Figure 1: An OPP with a marked brink from vertex A
to E (vertices B,C and D are non-extreme). Its planes
of vertices and sections perpendicular to the X axis
are shown in dark and light grey respectively.

In the EVM model the set of EV can be ordered in
six possible ways depending on the coordinate values:
XYZ, XZY, YXZ, YZX, ZXY, and ZYX. In an XYZ
ordered EVM, planes of vertices perpendicular to the
X axis appear ordered from low to high = values and,
in each of them, lines of vertices parallel to the Y axis
appear also ordered from low to high y values.

Properties of the EVM

All the properties mentioned are proved in [AA98].
Sections can be computed from planes of vertices
and vice-versa:

So(P) = Sn(P) = 0;

plv;(P) = S;—1(P) ®" Si(P), i=1...n (2)

where plv;(P) and S;(P) denote the projections of
plv;(P) and S;(P) onto a main plane parallel to P,
n is the number of planes of vertices and ®* denotes
the regularized XOR operation. Note that in order
to operate with the projections we need not take into
account the coordinate of the extreme vertices that
corresponds to the projecting plane.

The following property concerns the XOR opera-
tion:

Let P and @ be two d-D (d < 3) OPP, having

EVM(P) and EVM(Q) as their respective models,
then,

EVM(P®" Q)= EVM(P)® EVM(Q) (3)

This property means that the XOR operation
works in 0D, because it is applied to the EV of the
model. Therefore, sections are obtained from planes
of vertices and vice-versa by applying the XOR, oper-
ation to the extreme vertices.

The following property is a corollary of the previ-
ous one:
if P and @) are quasi-disjoint, then

EVM(PU* Q) = EVM(P)® EVM(Q) (4)

Contributions of the EVM

The EVM was first introduced as a solid model
[AA98], but now we are studying its application in the
field of volume rendering and image processing and
we have obtained some results which we summarize
in this section.

A boundary extraction algorithm has been devised
consisting of two steps: a conversion from a voxeliza-
tion to the EVM [JADOO] and a conversion from the
EVM to a hierarchical boundary representation (B-
Rep) which avoids the extreme redundancy of prim-
itives. The obtained B-Rep model is composed by a
relatively few large orthogonal faces instead of a huge
number of little triangular or rectangular faces, as in
marching cubes (MC) like approaches [LC87], or as
in other block-form approaches as the semiboundary
representation (SB) [UO91]. For several examples, the
number of faces obtained with the EVM were about
1/6 of the number of faces obtained with MC and 1/3
of the number of faces obtained with SB [JADOO].

Also in the same work [JADOO] several compres-
sion techniques applied to EVM have been presented
and evaluated, for storage and transmission purposes.

Finally, we published recently a new method for
erosion and dilation using the EVM [JD01]. This
approach works in identical way in images and vol-
umes and is independent of the size both of the image
and the structuring element. Related operations as
opening and closing have also been implemented and
proved.

3. EVM-based connected com-
ponent labeling algorithm

In this section we present our connected compo-
nent labeling algorithm(EVM-CCL). Our proposal is
based in [TBNO95] but using the EVM model and its
particular partitioning. It works in identical way for
images and volumes, is size-independent, reduces the
number of labels and equivalences generated in the
first pass and deals indistinctly with manifold and
non-manifold data.

3.1. Decomposing EVM into an OUDB

As said in the introduction, we first obtain a par-
ticular partitioning straightforward from the EVM
which consists in an ordered union of disjoint boxes
(OUDB).

This partitioning can be thought as a special kind
of cell decomposition like octrees, bintrees [DST92]
and BSP [SN97] which have been used for representing
volume datasets. The OUDB is axis aligned as octrees
and bintrees but the partition is done along the object
geometry like BSP.

7

Figure 2: a) An OPP. b) XZ decomposition (6 boxes).
¢) XY decomposition (7 boxes). d) YZ decomposition
(8 boxes).

We obtain the OUDB from EVM by two steps.
First, we split the data at every plane of vertices
perpendicular to a main axis, say X for instance, ob-
taining a set of slices. Secondly, we split each slice at
every plane of vertices perpendicular to another main
axis, say Y, obtaining a set of boxes for each slice. All
the obtained boxes constitute the OUDB partition-
ing. An object can be decomposed into six different

sets of boxes depending on the axes we choose to split
the data: XY, XZ, YX, YZ, ZX, ZY. Figure 2 shows
an object and the XZ, XY and YZ decompositions.
Procedure EVMtoOUDB is as follows:

procedure EVMtoOUDB (Input p:EVM Input
dim:integer Input PCoord,LCoord:integer I/O q:
OUDB)
var br: Brink; S1, S2; plv: EVM endvar
if dim = 1 then ReadBrink(p, br)
while - EndEVM(p) do
AppendBoz(q, br, PCoord, LCoord);
ReadBrink(p, br);
endwhile
else dim # 1
dim:= dim - 1
S1:= 0;
plvi=ReadPlv(p, dim)
while—EndEvm(p) do
S2:= S1 ® plv;
GetCoord(plv, dim, PCoord, LCoord)
EVMtoOUDB(S2, dim, PCoord, LCoord, q)
S1:= S2; plvi=ReadPlv(p, dim)
endwhile
endif
endprocedure

This procedure uses the basic operations of EVM:
ReadPlv and EndEV M, which allow us to traverse
the EVM. The first one returns the current plane
(when dim = 2) or line (when dim = 1) of vertices
of p whereas the another one detects the end of p.
GetCoord gets the plane coordinate, PCoord (dim =
2), or the line coordinate, LCoord (dim = 1). The
XOR operation between a section and a plane or line
of vertices produces the next section (see equation 1).
ReadBrink obtains a brink from a 1D EVM (which
consists of a set of collinear brinks) and AppendBox
builds a box using the brink br and the values PCoord
and LCoord and appends it to the OUDB g.

As most of the algorithms dealing with EVM, this
one is also recursive in the dimension. When dim = 3,
all the 2D sections are computed from the planes of
vertices of the model. For each section the proce-
dure is called recursively (then, dim = 2) and all
the 1D sections are computed from their lines of ver-
tices. Finally, the recursion reaches the base case
when dim = 1 and each 1D section is processed.

Obtaining the EVM from the OUDB is a very
simple method that consists of doing the Xor opera-
tion among all the boxes, applying property 4.

procedure OUDBtoEVM(Input :OUDB I/O p:EVM)
var evq: EVM endvar
p:=IniEVM()
for i in [1.. NumberOfBozes(q)] do
evq:= BozToEVM (q;); p:=p ® evq
endfor
endprocedure

BoxToEVM converts a box to its EVM represen-
tation by putting its 8 vertices in an ordered way.

3.2. Connected boxes

rithm

Once the OUDB partition has been achieved the
connected boxes labeling process (CBL) takes place.
Previous works use a sequential two-pass strategy
which works at voxel-level , [KR89] and [TBN95]. In
the first pass all voxels are labeled but there remain
some unsolved label equivalences which are sorted out
in a second pass. Thurfjell et al.’s algorithm [TBN95]
improved this technique by working with the semi-
boundary representation of the data, so they only la-
bel voxels belonging to the boundary of the object.
The method we propose follows the classical two-pass
approach (labeling and renumbering pass), but it tra-
verses the set of disjoint boxes(OUDB) instead of a set
of boundary voxels, further diminishing the number of
elements to label.

labeling algo-

3.2.1. The labeling pass

Suppose an OUDB partition obtained by splitting
first at the X coordinate (X-slices) and then each X
slice at the Y coordinate (XY slices). First, a label
is set to the first box. Then, the remaining boxes are
traversed and each of them is labeled according to a
subset of the previous boxes: its neighbor boxes. This
neighborhood includes those boxes in the immediate
previous X Y-slice and those boxes in the immediate
previous X-slice. See algorithm.

procedure CCL (I/O obj: OUDB)
var i, j: integer; mark: boolean endvar
FirstLabel(obj, 1)
for i in [2..BozesNumber(obj)] do
ji=i-1; mark:=false
{Skip boxes in the same slice XY}
while j > 1 A SameSliceXY (0bj, 4, j) do
ji=j-1
endwhile
{Compare with boxes in the previous slice XY}
while j > 1 A SliceX Yadjacent(obj, i, j) do

if NeighboursXY(obj, i, j) then
AssignLabel(obj,i,Label(0bj,j),mark)
SetEquivalence(EqTable, Label(obj,i), La-
bel(obj.j))
endif
=1
endwhile
{Skip boxes in the same slice X and in slices Y
not adjacents}
while j > 1 A SameSliceX(0obj, 4, j) do
ji= -1
endwhile
{Compare with boxes in the previous slice X}
while j > 1 A SlicesXadjacent(obj, i, j) do
if NeighboursX(obj, i, j) then
AssignLabel(obj, i, Label(obj, j), mark)
SetEquivalence(EqTable, Label(obj,i), Label

(obj, 5))
endif
ji= i1
endwhile

if —mark then NewLabel(obj, i, EqTable) endif
{End of subset of boxes to compare with box i}
endfor
endprocedure

AssignLabel assigns to box i the label of box j and
NewLabel assigns a new label to box 1.

Figure 3 illustrates the labeling process in 2D,
straightforward generalization to 3D is possible. On
the figure, the image’s EVM has been obtained and its
OUDB partition has been computed (a top to down
and left to right ordered list). At the begining all the
boxes in the list are unlabeled. Then the first box is
labeled with 1, afterwards the labeled neighborhood
(from previous boxes in the list) of the second box is
checked. Any neighbor box is found, so this box is set
with a new label: 2. Next the third box is checked.
Testing previous boxes in the list (first and second
one) only the first one is neighbor to it, then the third
box is set to the same label than the first one. This
process continues until all the boxes are labeled.

3.2.2. Setting equivalences

In the labeling pass, label equivalences can be
detected. When a box ¢ has two or more neighbors
labeled with different labels, there is an equivalence
between two or more regions. These label equiva-
lences are saved in an equivalence table. Following
the same labeling strategy proposed by Thurfjell et
al. [TBN92], this table has an entry for each label.
The index corresponds to the region number and the

content to its label. When a new label is set, an ele-
ment is added to the table with the same value for the
region number and label. Procedure SetEquivalence
updates this table in the way shown below:

procedure SetEquivalence(I/O EqTable:Table, Input
labell,label2: inetger)
if EqTable[label2]=label2VEqTable[label2]=labell
then
EqTable[label2]=labell
else
if EqTable[label2] < labell then
SetEquivalence(EqTable, EqTableflabel2],labell)
else {EqTable[label2]>labell}
SetEquivalence(EqTable,labell, EqTableflabel2)])
endif
endif
endprocedure

Figure 3 illustrates the progressive updating of the
Equivalences table. Each time an equivalence is de-
tected the equivalence table is updated to guarantee
an ordered storing of nested equivalences.

3.2.3. The renumbering pass

The renumbering sorts out all the equivalences
saved in the labeling pass. Setting equivalences in
an order way, as explained above, has the advan-
tage that it makes the renumbering easier. As the
equivalences have been saved in increasing order, the
nested equivalences are linked in increasing order too.
So, the renumbering pass is just a traversal of the
table and when FEqTable[i] # i then EqTable[i] —
EqTable[EqTable[i]] which has been processed pre-
viously. At the end, the nested equivalences will be
propagated correctly and all the regions with equiva-
lent labels will have the same label. The main draw-
back with this strategy deals with the size that the
equivalences table can reach because we need one en-
try per each new detected label. However, our pro-
posal reduces considerably the number of needed la-
bels as we will prove later.

Figure 3 shows the final state of the equivalences
table after the renumbering pass.

Finally figure 4 shows the three steps carried out
to achieve the EVM-based connected component la-
beling algorithm in 2D. First, the EVM is extracted
from the input data and its OUDB partition is ob-
tained (each grey level is a box), then the labeling of
boxes is made and finally the equivalences are solved
and the connected components stored as separated ob-

=

3 1
(
s

Criginal Frage

Taaivalesce Tavle Sotting eanivalzace:
Esgion

1
| Lakal | 1

23473 Bezgion 1 2 24 35
2

a]¢] e e [1]2]]3] o

Fegion 1 2

ermharing

5 op . 245
4] semmmmn (23 T[]

Figure 3: Up:Original image and its la-
beled OUDB. Equivalences detection in
dark grey boxes. Bottom: Successive
Equivalence tables. Each dark grey cell in
the Labels Table produces an equivalence
to be saved in the Equivalence Table.

jects (each one with its own EVM).

3.3. Two-manifold property and other

applications

When comparing two boxes, we can maintain or
not the non-manifold zones. If two boxes share a face
or part of a face, then they will have the same label.
If they are disjoint, then the new box will have a new
label. But if they share an edge, a part of an edge or
a vertex, then they can have the same label or not.
In the former case, the algorithm will maintain the
non-manifold zones. In the latter case, the algorithm
will break the object at these zones and the obtained
connected components will be 2-manifold. These cases
are related to 6 and 26-adjacency respectively using
the terminology of voxel based approaches.

A box is represented by the two ending ver-
tices of its main diagonal and the NeighboursXY
and NeighboursX functions perform comparisons be-
tween the corresponding coordinates. When these

Figure 4: up-left: Original image, up-
right: OUDB decomposition, bottom-left:
OUDB labeled before renumbering pass
and bottom-right: four connected compo-
nents as separated objects.

comparisons include the equality, non-manifold zones
are maintained, otherwise the object is broken at these
zones guarantees the two-manifold property for each
component. In our implementation this choice is de-
fined by an user-specified parameter.

Figure 5 shows a simple 3D dataset with its com-
ponents as 2-manifold or non-manifold objects. Each
component with a different greylevel.

Figure 5: EVM-CCL algorithm applied to
a 3D data set with non-manifold detec-
tion(right) and without non-manifold de-
tection(left)

Once we have each component we can compute
its volume and reject it if this volume is smaller than
a specified threshold. Other integral properties like
the center of gravity or moments of inertia can be
computed as sums of each box contribution for each
component [Hof89].

4. Analysis of the algorithm and
experimental results

The obtention of the OUDB partition from the
EVM of the input data is a needed preprocess for the
method. As most of the algorithms concerned with
EVM it needs to compute sections. This computation
has a quadratic worst case complexity, but the average
experimental complexity is slightly greater than linear
nv!l2, nv being the number of extreme vertices.

The complexity of the EVM-CCL algorithm is
O(nb), nb being the number of boxes of the OUDB
representation. This number depends on the de-
composition (see Figure 2) but we cannot know it
a priori from the EVM model. The renumbering
pass (as the Thurfjell’s algorithm) is O(nl), nl be-
ing the number of labels generated in the labeling
pass. So our method will have better performance in
images(volumes) where the boxes decomposition pro-
duces fewer boxes than boundary pixels(voxels). This
is true in the most of cases except in extremely sparse
datsets where almost each pixel corresponds to a box.

Now we present some results. Our test set consist
in two images and a volume dataset (figures 6, 7 and 8
respectively). The algorithms have been implemented
in C on a Sun Microsystem ultrasparc60 machine.

Table 1 shows the dimensions of the datasets and
the time taken for the OUDB partition (in seconds).
The other items on the table are the number of com-
ponents observed with and without non-manifold de-
tection (on the table 4{6}-ady and 8{26}-ady respec-
tively), and the difference between the number of
boundary pixels(or voxels) and the number of boxes
resulting by the OUDB decomposition (#bound and
#boxes respectively).

Datasets logoUPC Magallanes pieces
(324x332) (400x159) (962x69)
4(6)-ady 16 29 78
8(26)-ady 16 18 56
#bound 4324 4662 1160
#boxes 177 1113 524
OUDB time 0.01 0.05 0.08

Table 1: Description of datasets

The next table presents per each dataset described
in the previous table a comparison between the aver-
age execution time using a voxel-based algorithm and

with our EVM-CCL.

Datasets logoUPC Magallanes pieces
voxel-based:

Labeling 0.15 0.06 0.29
Renumbering 0.06 0.03 0.3
Total 0.24 0.1 0.8
EVM-CCL:

Labeling 0.0001 0.02 0.03
Renumbering 0 0.0001 0.0001
Total 0.01 0.07 0.11

Table 2: Processing time statistics (secs.)

As we said above, our algorithm is image-size in-
dependent because its performance is related with the
number of boxes and it depends on the orthogonality
of the object. To prove this feature the size of the
former datasets was augmented by two maintaining
the same shape. Table 3 shows the EVM-CCL aver-
age execution time (CBL on the table) obtained for
these doubled size datasets. Note that the number of
boxes remains unchanged, then the time is the same
too, instead the number of boundary pixels(or voxels)
increases significatively.

1:2-scaled logoUPC Magallanes pieces
Datasets (648x664) (800x318) (1922x138)
#bound 8708 9748 119072
#boxes 177 1113 8414

CBL time 0.01 0.07 0.11

Table 3: Processing time of double size datasets

Figure 6: Connected components of 'logoUPC’.

Finally, the EVM-CCL algorithm allows significa-
tive reductions on the labels and equivalences gener-
ated through the labeling pass. It means reduction

Figure 7: 'Magallanes’ with and without
non-manifold detection

Figure 8: CT skull splitted in several small pieces

on setting equivalences time and saving of memory
requirements. Figure 9 illustrates the conventional la-
beling pass (left) and the boxes labeling pass (right).
Both images have been processed in the same order,
top to down and left to right. Each level of grey rep-
resents a different label and you can note how the left
image has more labels than the right one. It is pos-
sible because the OUDB partition allows us to check
adjacency along of many pixels(voxels) at the same
time. So, corner pixels, which generates new labels in
voxel-based approach, are just a piece of a large box in
EVM-CCL. We can check this property in the OUDB
partition shown in figure 4. Thus, table 4 presents the
number of labels and equivalences generated by two

different datasets and figure 9 illustrates one of these
cases (Detail).

Datasets voxel-based EVM-CCL
Labels Equival. Labels Equival.
Detail 29 25 7 3
logoUPC 50 33 16 0
Magallanes 134 115 57 28
pieces 283 69 76 20

Table 4: Labels and equivalences generated in labeling
pass

Figure 9:
voxel-based method wvs.
method. Each change of color on the same
component indicates an equivalence

Generation of Equivalences.
EVM-based

5. Conclusions and future work

We have applied the classical two-pass approach
to obtain the connected components of an image or
volume by using the EVM. The EVM is decomposed
as a particular set of disjoint boxes(OUDB) profit-
ing the EVM’s knowing about the object geometry.
Each box contains many voxels so we can label large
regions in only one step. Our approach is not voxel-
based but deals with boxes. It produces less labels
and equivalences and is faster than the voxel-based
ones. It also works in identical way for images and
volume datasets with no overhead of memory and it
is size-independent. Finally, it also can detect non-
manifold zones and separate the object at them. As
a future work, we are studying thinning methods, the
detection of holes and computation of the genus of 2D
and 3D images and other operations using the EVM.
Furthermore we are trying to extend it in order to
represent and operate with multimodal images.

6. Acknowledgments

This work has been partially supported by a CI-
CYT grant TIC99-1230-C02-02.

References

[AAOS]

[BMP99)

[DST92]

[Hof89]

[JADOO]

[JD01]

[KR89)]

[Lat97)

[LCS7)

A. Aguilera and D. Ayala. Domain ex-
tension for the extreme vertices model
(EVM) and set-membership classification.
In CSG’98. Ammerdown (UK), pages 33 —
47. Information Geometers Ltd., 1998.

O. Bournez, O. Maler, and A. Pnueli. Or-
thogonal Polyhedra: Representation and
Computation. In Hybrid Systems: Compu-
tation and Control, LNCS 1569, pages 46 —
60. Springer, 1999.

M.B. Dillencourt, H. Samet, and M. Tam-
minen. A general approach to connected-
component labeling for arbitrary image rep-
resentations. Journal of the ACM, 39(2):253
- 280, 1992.

C. M. Hoffmann. Geometric and Solid Mod-
eling. Morgan Kauffmann Publishers, Inc.,
1989.

J.Rodrguez, A.Aguilera, and D.Ayala. Ob-
tencin de la frontera de una imagen digital
3D usando el modelo EVM. In CEIG 2000,
pages 203-214, 2000.

J.Rodrguez and D.Ayala. Erosion and dila-
tion on 2d and 3d digital images: a new size-
independent approach. In Vision model-
ing and visualization 2001 (VMV’01), pages
143-150, 2001.

T. Kong and A. Rosenfeld. Digital topology:
Introduction and survey. Computer Vision,
graphics and Image Processing, 48:357 —
393, 1989.

L. Latecki. 3D Well-Composed Pictures.
Graphical Models and Image Processing,
59(3):164 — 172, 1997.

W. Lorensen and H. Cline. Marching cubes:
A high resolution 3D surfaces construction
algorithm. Computer Graphics, 21(4):163 —
169, 1987.

[Nic95)

[OJH99]

[RPG6)]

[Sam81]

[SN97]

[TBN92

[TBNO5]

[UA91]

[U091]

C. J. Nicol. A systolic approach for real time
connected component labeling. Computer
Vision and Image Understanding, 61(1),
1995.

J. Oikarinen, L. Jyrkinen, and R. Hietala.
Volume rendering using seed filling accel-
eration: Supporting cut planes by fast re-
seeding. Computer-aided Surgery, 4(4),
1999.

A. Rosenfeld and J.L. Pfaltz. Sequential op-
erations in digital picture processing. Jour-
nal of the ACM, 13(4):471 — 494, 1966.

H. Samet. Connected component label-
ing using quadtrees. Journal of the ACM,
28(3):487 — 501, 1981.

K. R. Subramanian and B. F. Naylor.
Converting Discrete Images to Partitioning
Trees. IEEE Transactions on Visualization
and Computer Graphics, 3(3), 1997.

L. Thurfjell, E. Bengtsson, and B. Nordin.
A new three-dimensional connected com-
ponent labeling algorithm with simulta-
neous object feature extraction capability.
CVGIP:Graphical Models and Image Pro-
cessing, 54(4):357 — 364, 1992.

L. Thurfjell, E. Bengtsson, and B. Nordin.
A boundary approach to fast neighbor-
hood operations on three-dimensional bi-
nary data. CVGIP: Graphical Models and
Image Processing, 57(1):13 — 19, 1995.

J. K. Udupa and V. G. Ajjanagadde.
Boundary and object labeling in three-
dimensional images. Computer Vision,
Graphics and Image Processing, 51(3):355
— 369, 1991.

J. Udupa and O. Odhner. Fast visualiza-
tion, manipulation and analysis of binary
volumetric objects. IEEE Computer Graph-
ics and Applications, 11(6):53 — 62, 1991.

