69 research outputs found

    The rhythms of life

    Get PDF
    A report on the symposium 'Clocks and Rhythms', Cold Spring Harbor, USA, 30 May-4 June 2007

    Circadian clocks and sleep: impact of rhythmic metabolism and waste clearance on the brain

    Get PDF
    The rotation of the Earth around its axis causes periodic exposure of half of its surface to sunlight. This daily recurring event has been internalized in most organisms in the form of cellular circadian clock mechanisms. These cellular clocks are synchronized with each other in various ways to establish circadian networks that build the circadian program in tissues and organs, coordinating physiology and behavior in the entire organism. In the mammalian brain, the suprachiasmatic nucleus (SCN) receives light information via the retina and synchronizes its own neuronal clocks to the light signal. Subsequently, the SCN transmits this information to the network of clocks in tissues and organs, thereby synchronizing body physiology and behavior. Disruption of cellular clocks and/or destruction of the synchronization between the clocks, as experienced for instance in jet lag and shift-work conditions, affects normal brain function and can lead to metabolic problems, sleep disturbance, and accelerated neurological decline. In this review, we highlight ways through which the circadian system can coordinate normal brain function, with a focus on metabolism and metabolic astrocyte–neuron communications. Recent developments, for example, on how waste clearance in the brain could be modulated by the circadian clock, will also be discussed. This synthesis provides insights into the impact of metabolism not only on the circadian clock, but also on sleep and how this connection may exacerbate neurological diseases

    Normalisation against circadian and age-related disturbances enables robust detection of gene expression changes in liver of aged mice

    Get PDF
    The expression of some genes is affected by age. To detect such age-related changes, their expression levels are related to constant marker genes. However, transcriptional noise increasing with advancing age renders difficult the identification of real age-related changes because it may affect the marker genes as well. Here, we report a selection procedure for genes appropriate to normalise the mouse liver transcriptome under various conditions including age. These genes were chosen from an initial set of 16 candidate genes defined based on a RNA-sequencing experiment and published literature. A subset of genes was selected based on rigorous statistical assessment of their variability using both RNA-sequencing and Nanostring hybridization experiments. The robustness of these marker genes was then verified by the analysis of 130 publicly available data sets using the mouse liver transcriptome. Altogether, a set of three genes, Atp5h, Gsk3β, and Sirt2 fulfilled our strict selection criteria in all assessments, while four more genes, Nono, Tprkb, Tspo, and Ttr passed all but one assessment and were included into the final set of marker genes to enhance robustness of normalisation against outliers. Using the geometric mean of expression of the genes to normalise Nanostring hybridization experiments we reliably identified age-related increases in the expression of Casein kinase 1δ and 1ϵ, and Sfpq, while the expression of the glucose transporter Glut2 decreased. The age- related changes were verified by real-time PCR and Western blot analysis. As conclusion, proper normalisation enhances the robustness of quantitative methods addressing age-related changes of a transcriptome

    REV-ERBα influences the stability and nuclear localization of the glucocorticoid receptor

    Get PDF
    REV-ERBα (encoded by Nr1d1) is a nuclear receptor that is part of the circadian clock mechanism and regulates metabolism and inflammatory processes. The glucocorticoid receptor (GR, encoded by Nr3c1) influences similar processes, but is not part of the circadian clock, although glucocorticoid signaling affects resetting of the circadian clock in peripheral tissues. Because of their similar impact on physiological processes, we studied the interplay between these two nuclear receptors. We found that REV- ERBα binds to the C-terminal portion and GR to the N-terminal portion of HSP90α and HSP90β, a chaperone responsible for the activation of proteins to ensure survival of a cell. The presence of REV-ERBα influences the stability and nuclear localization of GR by an unknown mechanism, thereby affecting expression of GR target genes, such as IκBα (Nfkbia) and alcohol dehydrogenase 1 (Adh1). Our findings highlight an important interplay between two nuclear receptors that influence the transcriptional potential of each other. This indicates that the transcriptional landscape is strongly dependent on dynamic processes at the protein level

    Suprachiasmatic to paraventricular nuclei interaction generates normal food searching rhythms in mice

    Full text link
    Searching for food follows a well-organized decision process in mammals to take up food only if necessary. Moreover, scavenging is preferred during their activity phase. Various time-dependent regulatory processes have been identified originating from the suprachiasmatic nuclei (SCN), which convert external light information into synchronizing output signals. However, a direct impact of the SCN on the timing of normal food searching has not yet been found. Here, we revisited the function of the SCN to affect when mice look for food. We found that this process was independent of light but modified by the palatability of the food source. Surprisingly, reducing the output from the SCN, in particular from the vasopressin releasing neurons, reduced the amount of scavenging during the early activity phase. The SCN appeared to transmit a signal to the paraventricular nuclei (PVN) via GABA receptor A1. Finally, the interaction of SCN and PVN was verified by retrograde transport-mediated complementation. None of the genetic manipulations affected the uptake of more palatable food. The data indicate that the PVN are sufficient to produce blunted food searching rhythms and are responsive to hedonistic feeding. Nevertheless, the search for normal food during the early activity phase is significantly enhanced by the SCN

    Altered sleep homeostasis in rev-erbα knockout mice

    Get PDF
    Study Objectives: The nuclear receptor REV-ERBα is a potent, constitutive transcriptional repressor critical for the regulation of key circadian and metabolic genes. Recently, REV-ERBα's involvement in learning, neurogenesis, mood, and dopamine turnover was demonstrated suggesting a specific role in central nervous system functioning. We have previously shown that the brain expression of several core clock genes, including Rev-erbα, is modulated by sleep loss. We here test the consequences of a loss of REV-ERBα on the homeostatic regulation of sleep.Methods: EEG/EMG signals were recorded in Rev-erbα knockout (KO) mice and their wild type (WT) littermates during baseline, sleep deprivation, and recovery. Cortical gene expression measurements after sleep deprivation were contrasted to baseline.Results: Although baseline sleep/wake duration was remarkably similar, KO mice showed an advance of the sleep/wake distribution relative to the light-dark cycle. After sleep onset in baseline and after sleep deprivation, both EEG delta power (1–4 Hz) and sleep consolidation were reduced in KO mice indicating a slower increase of homeostatic sleep need during wakefulness. This slower increase might relate to the smaller increase in theta and gamma power observed in the waking EEG prior to sleep onset under both conditions. Indeed, the increased theta activity during wakefulness predicted delta power in subsequent NREM sleep. Lack of Rev-erbα increased Bmal1, Npas2, Clock, and Fabp7 expression, confirming the direct regulation of these genes by REV-ERBα also in the brain.Conclusions: Our results add further proof to the notion that clock genes are involved in sleep homeostasis. Because accumulating evidence directly links REV-ERBα to dopamine signaling the altered homeostatic regulation of sleep reported here are discussed in that context

    Distinct roles of DBHS family members in the circadian transcriptional feedback loop

    Get PDF
    Factors interacting with core circadian clock components are essential to achieve transcriptional feedback necessary for metazoan clocks. Here we show that all three members of the Drosophila Behavior Human Splicing (DBHS) family of RNA-binding proteins play a role in the mammalian circadian oscillator, abrogating or altering clock function when overexpressed or depleted in cells. Although these proteins are members of so-called nuclear paraspeckles, depletion of paraspeckles themselves via silencing of the structural non-coding RNA (ncRNA) Neat1 did not affect overall clock function, suggesting that paraspeckles are not required for DBHS-mediated circadian effects. Instead, we show that the proteins bound to circadian promoter DNA in a fashion that required the PERIOD (PER) proteins, and potently repressed E box-mediated transcription but not CMV promoter-mediated transcription when exogenously recruited. Nevertheless, mice with one or both copies of these genes deleted show only small changes in period length or clock gene expression in vivo. Data from transient transfections show that each of these proteins can either repress or activate depending on the context. Taken together, our data suggest that all of the DBHS family members serve overlapping or redundant roles as transcriptional cofactors at circadian clock-regulated genes

    The nuclear receptor REV-ERBα regulates Fabp7 and modulates adult hippocampal neurogenesis

    Get PDF
    The function of the nuclear receptor Rev-erbα (Nr1d1) in the brain is, apart from its role in the circadian clock mechanism, unknown. Therefore, we compared gene expression profiles in the brain between wild-type and Rev-erbα knock-out (KO) animals. We identified fatty acid binding protein 7 (Fabp7, Blbp) as a direct target of repression by REV-ERBα. Loss of Rev-erbα manifested in memory and mood related behavioral phenotypes and led to overexpression of Fabp7 in various brain areas including the subgranular zone (SGZ) of the hippocampus, where neuronal progenitor cells (NPCs) can initiate adult neurogenesis. We found increased proliferation of hippocampal neurons and loss of its diurnal pattern in Rev-erbα KO mice. In vitro, proliferation and migration of glioblastoma cells were affected by manipulating either Fabp7 expression or REV-ERBα activity. These results suggest an important role of Rev-erbα and Fabp7 in adult neurogenesis, which may open new avenues for treatment of gliomas as well as neurological diseases such as depression and Alzheimer

    Liver-derived ketone bodies are necessary for food anticipation

    Get PDF
    The circadian system has endowed animals with the ability to anticipate recurring food availability at particular times of day. As daily food anticipation (FA) is independent of the suprachiasmatic nuclei, the central pacemaker of the circadian system, questions arise of where FA signals originate and what role components of the circadian clock might play. Here we show that liver-specific deletion of Per2 in mice abolishes FA, an effect that is rescued by viral overexpression of Per2 in the liver. RNA sequencing indicates that Per2 regulates β-hydroxybutyrate (βOHB) production to induce FA leading to the conclusion that liver Per2 is important for this process. Unexpectedly, we show that FA originates in the liver and not in the brain. However, manifestation of FA involves processing of the liver-derived βOHB signal in the brain, indicating that the food-entrainable oscillator is not located in a single tissue but is of systemic nature

    Circadian control of DRP1 activity regulates mitochondrial dynamics and bioenergetics

    Get PDF
    Mitochondrial fission-fusion dynamics and mitochondrial bioenergetics, including oxidative phosphorylation and generation of ATP, are strongly clock controlled. Here we show that these circadian oscillations depend on circadian modification of dynamin-related protein 1 (DRP1), a key mediator of mitochondrial fission. We used a combination of in vitro and in vivo models, including human skin fibroblasts and DRP1-deficient or clock-deficient mice, to show that these dynamics are clock controlled via circadian regulation of DRP1. Genetic or pharmacological abrogation of DRP1 activity abolished circadian network dynamics and mitochondrial respiratory activity and eliminated circadian ATP production. Pharmacological silencing of pathways regulating circadian metabolism and mitochondrial function (e.g., sirtuins, AMPK) also altered DRP1 phosphorylation, and abrogation of DRP1 activity impaired circadian function. Our findings provide new insight into the crosstalk between the mitochondrial network and circadian cycles
    corecore