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INTRODUCTION
The timing and quality of sleep are controlled by the inter-
action of a homeostatic process, that tracks sleep need as a 
function of the previous sleep/wake history, and a circadian 
process that ensures the appropriate timing of sleep relative 
to the daily light-dark alternation.1,2 Although these two pro-
cesses seem functionally and neurophysiologically distinct, at 
the molecular level, several core components of the circadian 
timing system were found to also play a role in maintaining 
proper sleep homeostasis.3,4

The molecular circadian oscillator consists of positive 
and negative elements. In mammals the positive elements 
comprise of CLOCK, NPAS2, and BMAL1, with CLOCK/
NPAS2:BMAL1 heterodimers driving the transcription of 
many target genes including that of the Period (Per1, -2) and 
Cryptochrome (Cry1, -2 ) genes.5 PER:CRY protein complexes 
suppress CLOCK/NPAS2:BMAL1-mediated transcription, in-
cluding their own, thereby constituting the negative elements 
in this core feedback loop. Additional interactions between 
these core clock genes at the level of transcription, transloca-

add further complexity and stability to the circuit. One im-
portant auxiliary feedback loop involves the orphan nuclear 

promoters of all three positive elements,6–8 and inhibits their 

Nr1d1

transcription.9–11 In turn,  expression is directly regu-
lated by CLOCK/NPAS2:BMAL1-mediated transcription.8,12

clock oscillation and to entrain central and peripheral clocks, it 
has been suggested to function as a synchronizing “hinge” of 
the clock gene machinery13 enabling it to act as “gatekeeper” in 
coordinating the circadian metabolic response.14

Nr1d1 (nuclear 
receptor subfamily 1, group D, member 1) gene, regulates 

promoter region of target genes.15,16

ligand-binding receptor family, but lacks the carboxy-terminal 
tail of the ligand-binding domain required for co-activation 
and thus necessary for transcriptional activation.17 As a con-

constitutive repressor of gene expression.16,18–21

Beside its important role in the generation of circadian 

metabolic pathways including adipocyte differentiation, glu-
coneogenesis, bile acid synthesis, and heme and cholesterol 
homeostasis.20,22–24 Consistent with its function,  is 
highly expressed in tissues with high rates of metabolism such 
as adipose tissue, liver, skeletal muscle, and brain.25,26 Rev-

 deletion impacts the expression of many metabolic genes, 
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in particular genes involved in lipid metabolic pathways.12 The 

induced obesity by reducing fat content and improving hyper-
glycemia and dyslipidemia.27 The expression of  can 
be directly activated through the peroxisome proliferator-acti-
vated receptors (PPARs) that play essential roles in energy me-
tabolism and are themselves expressed in a circadian manner.28

thereby further tightening the link between metabolic and cir-
cadian physiology.16,19–21

In the context of sleep homeostasis, we have previously 
shown that the expression of  in the forebrain of mice 
is decreased after sleep deprivation.29 We hypothesize that 

could act as an integrator of both energy demand and 
sleep pressure. With the aim to establish such role, we evalu-
ated sleep, the EEG, and cortical gene expression under base-
line and sleep deprivation conditions, in  knockout 
(KO) mice and their wild-type (WT) littermate controls.

METHODS

Animals and Housing Conditions
 KO mice were kindly provided by Ueli Schibler (Uni-

versity of Geneva, Geneva, Switzerland) and maintained on a 
mixed 129/Sv × C57BL6 background. In these mice, exons 3 

and 5 of the  gene, were replaced by an in-frame lacZ 
allele and a PGK-neo gene by homologous recombination in 
129/SV ES cells, resulting in the absence of the transcript and 
protein.8 Wild type (WT) littermates were used as control ani-
mals. Mice were individually housed in polycarbonate cages 
(31×18×18 cm) in a temperature and humidity controlled room 
(25°C, 50% to 60%, respectively) and a 12 h light/12 h dark 
cycle (lights on at 09:00, 70–90 lux). Animals had access to 
food and water ad libitum. All experiments were approved by 

Switzerland.

EEG/EMG Implantation
At the age of 9 to 14 weeks, 13 KO and 9 WT male mice were 
implanted with EEG and EMG electrodes under deep xylazine/
ketamine anesthesia as previously described.30

plated screws (diameter 1.1 mm) were screwed bilaterally into 
the skull, over the frontal and parietal cortices. Two served 
as EEG electrodes, and the remaining 4 anchored the elec-
trode connector assembly. As EMG electrodes 2 gold wires 
were inserted into the neck musculature. The EEG and EMG 
electrodes were soldered to a connector and cemented to the 
skull. Animals were allowed to recover from surgery during 
5–7 days before they were connected to the recording cables 
in their home cage. A minimum of 6 days were allowed for 
habituation to the cable and the experimental room prior to the 
experiments. Mice were 11–16 weeks old at the time of experi-
ment and age did not differ between genotypes (t-test, P = 0.33).

Experimental Protocols and Data Acquisition
EEG and EMG signals were recorded continuously for 72 h. 
The recording started at light onset; i.e., Zeitgeber Time (ZT) 

these two days were considered as baseline. Starting at ZT0 
of day 3, animals were sleep deprived by gentle handling as 
described previously31 during 6 hours (ZT0–6). The remaining 
18 h of day 3 were considered as recovery.

discrete Fourier transformation yielding power spectra (range: 
-
-

ware (EMBLA) and software (Somnologica-3) were purchased 
from Medcare Flaga (EMBLA, Thornton, USA).

Determination of Behavioral States

“Wakefulness,” “REM sleep,” or “NREM sleep” for consecu-
tive 4-sec epochs based on the EEG and EMG signals as pre-
viously described.30 Wakefulness was characterized by EEG 
activity of mixed frequency and low amplitude. Muscle tone 

-

stable muscle tone. REM sleep was characterized by regular 

twitches. Four-sec epochs containing EEG artifacts were 
marked according to the state in which they occurred and ex-
cluded from EEG spectral analysis. As the sleep/wake state of 
epochs in which EEG artifacts occurred could still be deter-
mined, they were included in the analysis of time-spent-asleep 
and -awake.

Data Analysis
Analysis of the time course of time spent in each sleep/wake 
state was performed on 1-, 12-, and 24-h values. For the 12-h 
and 24-h analysis, the 2 baseline days were averaged, as no sig-

repeated measures analysis of the variance [rANOVA], factors 
“day,” “time,” and “genotype”; P > 0.12 for factor “day” and all 
its interactions). To further quantify the altered baseline dis-
tribution of sleep/wake states in KO mice, hourly values were 
accumulated and genotype differences calculated to assess the 
times at which the two distributions deviated.

Sleep/wake state quality was assessed by analyzing the 
spectral content of the EEG. To account for inter-individual 
differences in overall EEG power, EEG spectra of the 3 sleep/
wake states were expressed as a percentage of an individual 
reference value calculated as the total EEG power across all 

This reference value was weighted so that for all animals the 
relative contribution of the 3 sleep/wake states to this refer-
ence value was equal, according to.32 Theta peak frequency in 
wakefulness and REM sleep was calculated by determining 
the frequency at which maximum power density in the theta 

Effects of sleep deprivation were assessed by analyzing EEG 
delta power, sleep fragmentation, and time spent asleep. Time 
course analysis of EEG delta power (i.e., the mean EEG power 
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and after sleep deprivation was performed as described pre-
viously.33

which an equal number of 4-sec epochs scored as NREM sleep 
contributed (i.e., percentiles). The baseline light periods were 
divided into 12 such sections; the baseline and recovery dark 
periods into 6. The recovery light (ZT6–12) period was di-
vided into 8 sections. The number of percentiles per recording 

-
bers of NREM sleep epochs contributed to each interval nec-

power values were normalized within each individual mouse 
by expressing all values relative to the mean value reached in 
the last 4 h of the main rest periods (i.e., ZT8–12) when delta 
power is minimal during baseline consistent with the fact that 

course, delta power levels reached immediately after sleep 
onset in baseline and after sleep deprivation were determined 
separately. To assure that the same number of 4-sec epochs 

(300 4-sec epochs) scored as NREM sleep. Sleep onset was 

lasting > 1 min and not interrupted by 2 or more 4-sec epochs 

onset in the baseline days and from the end of the sleep depri-
vation for the recovery period.

The effect of 6 h sleep deprivation on time spent in and 
NREM and REM sleep was assessed by calculating the re-
covery-baseline difference in sleep time for 6-h intervals; i.e., 

two 6-h intervals in the dark (ZT12–18 and ZT18–24). The 
effect of sleep deprivation on NREM sleep spectra and sleep 
fragmentation was assessed by contrasting EEG spectra and 
the number of short awakenings (waking bouts lasting 4 con-
secutive 4-s epochs or less; i.e., < 16 s, expressed per hour of 
NREM sleep31

onset (ZT6–9) from the values observed during the last 4 h of 
the baseline light periods (ZT8–12), a period during which ho-
meostatic sleep need (and EEG delta power) is lowest and sleep 
fragmentation highest. Similarly, NREM sleep spectra and the 

(ZT0–3) in the 2 baseline days was calculated and contrasted 
to the same reference.

Cortical Gene Expression Analysis
Nine KO and 10 WT male mice were used to assess the effect 
of genotype and sleep deprivation on cortical gene expression. 
In each genotype, half the mice were submitted to a 6 h sleep 
deprivation (ZT0–6), and the other half was left undisturbed 
and used as control. At ZT6, both groups of mice were sac-

USA) and quality (Agilent 2100 bioanalyzer chips; Agilent 

using random hexamers and Superscript II reverse transcrip-
tase (Invitrogen, Life Technologies, Europe, Zug, Switzerland) 

system (Applied Biosystems, Life Technologies, Europe, Zug, 
Switzerland). Cycler conditions were 50°C 2 min, 95°C 10 min, 
and 45 cycles at 95°C 15 s, and 60°C 1 min. To quantify the 

and probes were used (Table S2, supplemental material). Gene 
expression levels were normalized to 4 reference genes (Gapdh,
Tbp, Rsp9, and Eef1a1) using QbasePLUS software (Biogazelle, 

Fabp7 which was expressed 
relative to Gapdh only. The fold change indicative of the rela-
tive gene expression are based on the mean of three biological 
replicates in relation to control samples.

Statistics and Analysis Tools
TMT Pascal Multi-Target5 software (Framework Computers, 
Inc., Brighton, MA, USA) was used to manage the data, Sig-
maPlot V10.0 (Systat Software Inc., Chicago, IL, USA) for 
graphics, and SAS V9.2 (SAS Institute Software Inc., Cary, 
NC, USA) or Sigmastat V3.5. (Systat Software, Chicago, IL, 
USA) for statistical analysis. To assess the effect of genotype 
on the sleep/wake distribution, EEG power spectra, and time 
course of delta power, 2- or 3-way rANOVAs were performed. 

light/dark amount, accumulation, fragmentation of sleep/wake 
states, and in EEG delta power at sleep onset, as well as the 
cortical gene expression were evaluated using t-tests. Statis-

mean ± standard error of the mean (SEM) or of the difference 

RESULTS

Sleep/Wake Distribution Is Advanced in  Knockout 
Mice
Similar to WT mice,  KO mice were mostly asleep 
during the light period and mostly awake during the dark pe-
riod (almost 2/3 of the time in the respective 12-h periods; 
Figure 1; Table S1, supplemental material). Nevertheless, the 
distribution of the 3 sleep/wake states over the 24-h day impor-

were observed mainly at the time encompassing the light-to-
dark transition when KO mice spent more time awake than 
their WT littermates; i.e., in the 2 h prior and 3 h following this 
transition (ZT10–15; Figure 1A). The dynamics of the accumu-
lation of time spent awake over the baseline days summarizes 
this effect and demonstrates that by ZT15 KO mice accrued 
approximately 1 h extra wakefulness compared to WT mice 
(Figure 1B). Interestingly, this gain in wakefulness was rap-
idly lost over the subsequent 3 h (ZT15–18) resulting in almost 
identical 24-h values for wakefulness (Figure 1B, Table S1). 
Similar, albeit opposite results were observed for NREM and 
REM sleep (analyses not shown).
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more time awake in the 12-h light period compared to WT 
and more time asleep during the 12-h dark period, although 

Table S1). As a result, the differences between time-spent-
asleep (or awake) in the 12-h dark and 12-h light periods, 
sometimes used to estimate the amplitude of the diurnal 

mice for all 3 sleep/wake states (Table S1). To further quan-
tify the effect of the earlier wake onset on this reduced di-
urnal amplitude, the 12-h periods over which amplitude was 
calculated were systematically shifted at 1-min increments 

(Figure 1C). Advancing the 12 h periods by 65 ± 14 min 
yielded the highest diurnal amplitude in KO mice while for 
WT mice maximal amplitude was already reached with a zero 
shift (+3 ± 8 min; Figure 1C). This suggests that in KO mice 
the 12 h dark period does not adequately cover the active 
period. Moreover, the shift with which a zero amplitude was 
obtained (i.e., the time of day that divides the 24-h day into 
halves with equal sleep time) was advanced by 1.8 ± 0.3 h 
relative to WT mice (Figure 1C). Nevertheless, the maximum 

(Figure 1C; P = 0.01, t-test) indicating that besides an earlier 
onset other aspects of the sleep/wake distribution, such as the 

Figure 1— (A)

(B)

upper curve. (C)

A B

 C
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less pronounced main waking bout (analysis not shown), dif-
fered between the two genotypes.

Evidence of Altered Sleep Homeostasis in  Knockout 
Mice
To assess the consequence of a lack of  on sleep ho-
meostasis mice were challenged with 6-h sleep deprivation. 
We found that several aspects of the response to sleep depriva-
tion were altered including time spent asleep, sleep continuity, 
and the levels of EEG delta power reached.

Both genotypes responded to the sleep deprivation by 
sleeping more than in the corresponding periods in baseline 

-
covery (i.e., during the last 6 h of the light period; ZT6–12), re-
covery of REM sleep was deferred to the following dark period 

 KO mice 

period when WT mice accrued most of the extra time spent 

sleep (3 ± 6 min) whereas WT mice obtained 35 ± 7 min extra 
NREM sleep compared to that expressed in corresponding 
baseline hours (Figure 2). KO mice also gained less extra 
REM sleep (7 ± 2 min vs. 13 ± 1 min in WT mice; Figure 2B). 

min and 57 ± 10 min; REM sleep: 14 ± 3 and 20 ± 3 min, for 
KO and WT respectively; P = 0.24 and 0.11 for NREM and 
REM sleep, respectively, t-tests).

The general time course of the changes in EEG delta power 
was similar in the 2 genotypes; i.e., delta power increased 
during periods when waking prevails (i.e., the dark or active 
period), was highest immediately after light onset and de-
creased over the remainder of the light (or rest) period, and 

sleep deprivation resulted in an increase in EEG delta power in 
subsequent NREM sleep (Figure 3A). This increase was, how-

power at sleep onset in baseline was lower in KO mice com-

delta power during NREM sleep are often accompanied by a 
lower number of brief awakenings indicating deeper and more 
consolidated sleep.34 Accordingly, sleep deprivation resulted in 
a pronounced reduction of the number of brief awakenings in 
both genotypes (Figure 3C) compared to the baseline reference. 
Consistent with the smaller increase in EEG delta power, the 
decrease in the number of brief awakenings interrupting sleep 

-
vation was smaller in KO mice (rANOVA, P < 0.01; Figure 3C). 
Post hoc testing revealed, however, that the genotype effect in 

and 0.06, for baseline and recovery sleep, respectively). After 
sleep onset in baseline, WT mice showed a reduced number 
of brief awakenings to the number observed at the end of the 
baseline light periods (ZT8–12), while in KO mice no differ-
ence from this baseline reference was observed (Figure 3C). In 
keeping with the analysis of EEG delta power, as reference for 
the effects on sleep fragmentation the number of brief awaken-
ings occurring at the end of the baseline light periods was used 
(see Methods). This reference did not differ between genotypes 
(Figure S1, supplemental material).

To further investigate whether the genotype differences in 

frequency range and to homeostatic sleep need we analyzed 
the spectral composition of the NREM sleep EEG. Spectra did 
not differ between genotypes when averaged over the entire 
48-h baseline (Figure S2A, supplemental material). Similarly, 
in the last 4 h of the baseline light periods, when sleep need is 
considered to be lowest, no spectral differences were observed 
(Figure 4A and 4B, dashed lines labeled 5 and 6). In contrast, 
when sleep need was high; i.e., at the start of the baseline light 

Figure 2—
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periods and after sleep deprivation, NREM sleep spectra in
 KO mice did deviate from WT and the frequency 

bins in which power density differed in baseline and after 
sleep deprivation largely overlapped (Figure 4). Thus under 
both conditions, NREM sleep EEG power density between 2.5 

Although the largest effects of sleep deprivation on the 

recovery-to-baseline differences can be observed over a larger 
frequency range.35,36 In the current experiment, power den-

baseline (Figure 4C). In addition, we found evidence that EEG 

sleep deprivation were very similar for the two genotypes, the 
magnitude of these changes was smaller in  KO mice. 
The frequency range for which the sleep deprivation effect was 

The results concerning the genotype difference in the increase 
in EEG delta power suggest that when awake, homeostatic sleep 
need accumulates at a slower rate in mice lacking .
Given the published relationship between; e.g., theta activity 
in the waking EEG and delta activity in subsequent NREM 
sleep,37,38

EEG. When analyzed over the 48-h baseline, EEG activity 
during wakefulness showed higher power in the higher delta fre-

these 3 frequency ranges were similarly affected in REM sleep 
(Figure S2A). Moreover, the prevailing theta frequency during 
wakefulness, but not that of REM sleep, was slower in 
KO mice. Slower theta oscillations in the wakefulness EEG were 
also observed during the sleep deprivation (Figure S2B).

We next focused on the waking EEG in the 3 h immediately 
preceding sleep onset in baseline and during the last 3 h of 
the sleep deprivation in an attempt to identify those frequency 
components that could have contributed to the delta power dif-
ferences observed in subsequent NREM sleep. In the last 3 h 

Figure 3 . (A) Mean (± 1 SEM) EEG delta 

(B)

(C)

A B

 C
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of both the baseline dark periods (ZT21–24) and of the sleep 
deprivation (ZT3–6) the waking EEG showed clear theta ac-
tivity in WT mice (Figure 5A). The appearance of a distinct 
theta peak in the waking EEG resulted from the combination 

conditions, EEG activity in the high gamma range (40–90 

last 4 h of the baseline light periods which served as reference 
(Figure 5B; Figure S4, supplemental material). Although also 
in KO mice activity in the theta and high gamma frequency 
ranges was increased both in the baseline dark period and the 
sleep deprivation, the peak in theta activity during the baseline 
dark was less distinct because high delta activity remained el-
evated (Figure 5A, 5B). Moreover, the increase in theta power 
was smaller in both baseline and sleep deprivation when mice 

Figure 4 (A) Mean EEG 

(B) 

(C) 

A

B C
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lack . Correlation analyses showed that this increase 
in theta power predicted the increase in EEG delta power in 
subsequent NREM sleep (Figure 5C). In the sleep deprivation 
condition also the increase in high gamma activity was smaller 
in the KO mice.

The Molecular Consequences of Lack of  in the 
Cerebral Cortex
To test whether the lack of  also affects molecular 
markers of sleep need, we investigated the cortical expression 
of genes that are known to be reliably modulated by sleep depri-
vation; i.e., Homer1a, Sgk1, Dbp, and Per2.29,39 Homer1a, Sgk1,
and Per2 were up-regulated by sleep deprivation and Dbp ex-
pression down-regulated although post-hoc testing showed that 

We previously found that also Npas2 expression increases after 

sleep deprivation,29 but in the current experiment this increase 
-

duced changes in cortical gene expression did, however, not 
statistically differ between the two genotypes (Figure 6).

Next we assessed the expression of genes known to be di-
rectly regulated by , to test whether has a 
similar role on these targets in the cerebral cortex. The expres-
sion levels of Bmal1, Npas2, Clock
Fabp7 ( fatty acid binding protein 7)40

regulated in the cortex of  KO mice compared to WT 
(Figure 6); that of Fabp7 more than 7-fold. The overall level 
of Dbp and Per2 in the KO was also increased, although for 
Per2

 directly, or indirectly in the case 
of Dbp and Per2, controls the expression of clock genes also 
in the cortex.

Figure 5 (A) Mean 

(B) 

(C) 

2

2

A B C
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DISCUSSION

 Impacts Sleep Homeostasis

phenotype in mice lacking 
values for the electrophysiological correlate of homeostatic 
sleep need, EEG delta power, were reached after periods of 
prolonged wakefulness in KO mice compared to their WT lit-
termates. This phenotype was observed both after enforced 
and spontaneous periods of wakefulness arguing against the 

-
ness that usually accompany a sleep deprivation protocol such 
as; e.g., increased stimulation, locomotion, and stress. This 

the delta frequencies and appeared only at times when sleep 
need was high. The observed differences do therefore not rep-
resent a general EEG phenomena but concern only those fre-

the less pronounced increase in sleep consolidation, another, 
33 con-

of sleep need when  KO mice are awake. Correlates 

waking EEG, the theta content of which is known to increase 
over the course of extended waking periods.34,38,41 Moreover, 
in the rat, levels of theta activity during wakefulness and/or 
time spent exploring, during which theta activity is prominent, 
predict delta power in subsequent NREM sleep,37,38 suggesting 
that these two EEG activities not only gauge the same under-
lying homeostatic process but that wakefulness with higher 
theta activity causes delta power to be higher during the sleep 

 KO mice displayed a smaller increase in theta ac-
tivity during wakefulness in the 3 h preceding sleep onset that 
predicted the lower delta power immediately after sleep onset. 

frequencies, the activity in which is closely coupled to theta os-
cillations in the hippocampal formation.42,43 In both genotypes 
EEG activity in the gamma band was increased relative to the 
values reached when sleep need is lowest but, like for theta 
activity, this increase was less pronounced in the KO mice al-

Rev-

behaviors rich in theta activity such as exploratory behavior, 
and/or in the recruitment of neuronal populations contributing 

we observed during wakefulness constitutes additional evi-
dence for a role of  in modulating theta oscillations 
of hippocampal origin. Of interest in this context is the fact 
that lack of  leads to increased adult neurogenesis in 
the hippocampus,40 which may affect the network properties 
contributing to theta oscillations.44

, Sleep Homeostasis, and Dopamine
Impaired hippocampal function in  KO mice has 

been demonstrated for a number of hippocampal-dependent 

behaviors.40,45 This impairment was accompanied by increased 
dopamine turnover.45,46 The slower hippocampal theta oscilla-
tions we observed in  KO mice are consistent with 
the theta slowing observed when dopamine tone is increased 
as observed in Dopamine transporter (Dat) KO mice.47 In 

 KO mice the increased dopamine turnover was due 
to an up-regulation of Tyrosine hydroxylase (Th), the rate-
limiting enzyme in dopamine production.45,46 can 
directly repress Th expression in competition with the Nuclear 

Figure 6

to sleep ad lib

Homer1a Sgk1
Fabp7 Bmal1

Npas2
Clock Dbp
Per2
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receptor-related 1 protein (Nurr1), another nuclear receptor 
and key transcriptional activator of Th and other elements of 
the dopaminergic system.46,48 Of immediate interest for our 
current study is the observation that altered dopamine levels, 
resulting from altered Dat activity, were found to be associated 

and humans.49–51

Other clock genes have been implicated in the regulation of 
dopamine levels in the brain.46,52,53 Such role might be direct, 

 Th expression discussed above 
-

mine degrading enzyme monoamine oxidase A (Maoa),53 or 
indirect through the effects of other clock genes on the expres-
sion of e.g., . For instance, CLOCK/NPAS2:BMAL1 
heterodimers induce 
in turn, represses the expression of these three transcription 
factors.6–8,11

increases the 
expression of Bmal1, Npas2, and Clock. Consistent with this 
up-regulation we found the CLOCK/NPAS2:BMAL1 targets 
Dbp and Per2 to be upregulated as well. PER2, in turn, not 
only provides negative feedback to CLOCK/NPAS2:BMAL1 
induced transcription but, in addition, coordinates the action of 

NURR1, 
via protein-protein interactions.54

a complex network of interacting transcriptional regulators, 
seems central in changing dopamine turnover.

The link between dopamine levels and sleep homeostasis 
is intriguing and could also have contributed to the profound 
sleep homeostatic phenotype we observed in  KO 
mice. This relationship is, however, not straightforward; the 
mutations in Dat activity referred to above led to increased 
dopamine post-synaptically due to compromised dopamine 
re-uptake which was associated with increased homeostatic 
sleep rebounds,49–51 while in  KO mice the reduced 
inhibition of Th expression led to increased dopamine levels 
pre-synaptically and, as we show here, was associated with a 
decreased homeostatic sleep rebound. Further illustrating this 

the expression of the Dopamine D3 receptor.55 The activation 
of this receptor is thought to be inhibitory, reducing novelty 
seeking behaviors, and to reduce dopamine through post-
synaptic negative feedback.56

 and Circadian Organization of Overt Behavior
Although  is important for the circadian molecular cir-
cuitry and for setting the phase of circadian rhythms in periph-
eral tissues,12 its lack only modestly affects rhythms in overt 
behaviors.  KO mice do maintain circadian organiza-
tion of locomotor activity under constant conditions albeit with 

9,12 The earlier onset 
of the main waking period under the entrained conditions of 
our experiment is consistent with a shorter endogenous period 
although the approximate 24 min shortening of the period 

wake distribution. The inducible depletion of both 
and its homolog  does lead to a profound disruption 
of circadian behavior12 pointing to a functional redundancy 

between the two at least for this phenotype. Whether also the 
sleep homeostatic phenotype becomes more pronounced in 
double KO mice remains to be determined.

In addition to altered EEG delta power and sleep fragmen-
tation after sleep deprivation, we also observed a distinctly 
different pattern for the recovery of sleep time lost during the 
sleep deprivation to which the advance of the sleep/wake dis-
tribution might have contributed. In both genotypes, maximal 

dark period under baseline conditions. After the sleep depri-
vation, it was during these 6 h that WT mice adapt their be-
havior to allow for recovery sleep gaining 35 min of NREM 
sleep. KO mice conspicuously maintain their baseline sleep/
wake pattern and did not increase NREM sleep time above 
basal levels. As a consequence of the extra NREM sleep in the 
recovery dark period, EEG delta power in WT mice, excep-

of KO mice to mount the appropriate behavioral 
sleep response is reminiscent to that observed in mice lacking 
the clock gene Npas2.57 Also Npas2 KO mice have intact cir-
cadian behavior but a poor homeostatic response to food or 
sleep deprivation.58

Sleep Deprivation, Mood, Metabolism, and Clock Genes
Strong, bidirectional links exist between sleep and mood dis-
orders, perhaps best illustrated by the amazingly rapid, albeit 
short lasting, antidepressant effects of sleep deprivation in de-
pression.59 -
bined with the observation made in some, but not all studies, 

60

led to the hypothesis that sleep need accumulates at a slower 
rate during wakefulness and is causally involved in the dysreg-
ulation of mood.61 Abnormal dynamics in waking theta activity 
over the course of a sleep deprivation further suggest abnormal 
sleep homeostasis in depressed patients.62 Both the altered 
theta activity in wakefulness and the altered delta activity in 
NREM sleep we here describe for the KO mice are reminiscent 
of these EEG changes associated with mood disorders.

Sleep homeostasis and mood disorders could also be linked 
at the molecular level. Many studies reported on the role of 
clock genes in mood regulation63,64 and our own work revealed 
a bidirectional relationship between clock genes and sleep ho-
meostasis,3 further illustrated here by the altered homeostatic 
regulation of sleep in  KO mice and by the effects of 
sleep deprivation on the cortical expression of the clock genes 
Npas2 and Per2, and the clock-controlled transcription factor 
Dbp. We previously showed that like Dbp, was de-
creased by sleep deprivation.29 -
scripts known to be reliably upregulated sleep deprivation; 
i.e., Homer1a and Sgk1. Although the expression of both was 
indeed increased in the current study, their increase did not 
differ between genotypes pointing to a dissociation between 
EEG and molecular markers of sleep need.

-
tral role in the regulation of mood as evidenced by; e.g., a 
mania-like behavior in KO mice,40,46,65 and, perhaps, the al-
tered sleep homeostasis in the current study. The involvement 
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dopaminergic signaling discussed above. Other likely candi-
-

pocampal neurogenesis,40 which has also been linked to mood 
disorders,66 and its well-established role in metabolism and 
circadian rhythms.64 One important mediator of the increased 
adult hippocampal neurogenesis is FABP7,40,67 a direct target 

40 Because of the large, 7.5-fold over-expres-
sion of Fabp7 in the brain that we observed (Figure 6),40

FABP7 might also be involved in mediating other phenotypes 
observed in  KO mice such as anxiety and memory 

67–69 Concerning the sleep homeostatic phenotype, 
overexpression of the mouse Fabp7 
Fabp-B Drosophila melanogaster resulted in 
decreased sleep duration and consolidation,68 the Drosophila
correlates of reduced homeostatic sleep need.50,70 Whether 
FABP7 plays a role in the homeostatic regulation of sleep in 
mammals has yet to be determined.

Several groups have investigated the role of the core clock 
genes in sleep homeostasis by studying the effects of sleep 
deprivation on EEG delta power in mice carrying targeted 
disruptions of single or a combination of clock genes.3,4 The 

dynamics of EEG delta power was demonstrated were the 
Cryptochromes.71 Cry1,2 double KO mice displayed a more 
rapid build-up of homeostatic sleep need during wakefulness 
resulting in overall higher levels of EEG delta power during 
baseline, explaining the smaller relative increase in EEG delta 
power after sleep deprivation. In contrast, as in our 
KO mice, evidence for a slower build rate was obtained in 
Bmal1 and Npas2 knock-out mice,57,72 while in Clock-mutant 
mice no differences were reported.73 Sleep homeostasis was 
also assessed in Per1 and Per2 single and double mutant KO 
mice but with inconsistent outcomes.74,75 These disparate re-
sults do not support a simple, unifying mechanism through 
which the clock gene circuitry, as a whole, alters the dynamics 
of the sleep homeostat but rather suggest that factors such as 

associated with differences in genetic background play im-
portant roles as has been demonstrated for circadian-related 
phenotypes.5

CONCLUSION

is of particular interest because both the molecule and the 
process are tightly linked to metabolism as well as circadian 
rhythms.3,14,76,77

repressor is modulated by cellular redox state through altered 
binding of its endogenous ligand, heme.78,79 In the context of 
our sleep homeostatic phenotype,  could thus act as 
a sensor of the metabolic imbalance imposed at the neuronal 
level by periods of extended wakefulness in keeping with our 
proposal that clock genes not only set time-of-day, but in the 
cerebral cortex, can also be used to keep track of and respond 
to time-spent-awake.3,77 A recent study demonstrated that syn-
thetic agonists targeting both REV-ERB proteins leads to a 
strong, immediate reduction in sleep time when administrated 
at ZT6,80 implying that pharmacologically targeting of REV-
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Table S1. Time spent asleep and awake in baseline. 

Upper part: Mean (SEM) time spent in wakefulness, NREM sleep, and REM sleep over 12- and 
24h intervals (KO n=13, WT n=8). Lack of Rev-erb  caused animals to be significantly more 
awake in the light period (t-tests), an effect that was reversed in the dark, resulting in very 
similar 24h values (also see Figure 1). Lower part: Diurnal amplitude of sleep-wake states, 
quantified as the dark-light difference, was significantly smaller in KO mice. All values in 
minutes and based on two baseline days. 

12h light 12h dark 24h 

KO WT P KO WT p KO WT p 

Wake 280 (6) 249 (7) 0.003 452 (11) 484 (11) 0.07 732 (13) 733 (15) 0.82 

NREM 372 (7) 390 (6) 0.09 233 (11) 203 (9) 0.06 606 (13) 593 (11) 0.97 

REM 67 (3) 75 (3) 0.11 33 (2) 30 (2) 0.23 101 (3) 105 (4) 0.87 

12h dark- 12h light 

KO WT P 

Wake 172 (12) 235 (10) 0.002 

NREM -139 (12) -187 (12) 0.02 

REM -34 (3) -45 (3) 0.04 
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Table S2. Sequences of primers and probes used for TaqMan qPCR analysis of selected genes and 

references genes. 

Gene Direction Sequence 5' to 3' Accession # 
Symbol 

Homer1a fwd GCATTGCCATTTCCACATAGG NM_011982 
rev ATGAACTTCCATATTTATCCACCTTACTT 

probe ACACATTCAATTCAGCAATCATGA 
Bmal1 fwd CAAGAAAGTATGGACACAGACAAA  NM_007489 

rev GCATTCTTGATCCTTCCTTGGT 
probe TGACCCTCATGGAAGGTTAGAATATGCAGAAC 

Npas2 fwd GGTCATCGGATTCTTGCAGAA NM_008719 
rev TCCAGTCCTGCTGGATGTCA 

probe CACAATGAAGTCTCAGCACAAACAGAAATC 
Per2 fwd ATGCTCGCCATCCACAAGA NM_011066 

rev GCGGAATCGAATGGGAGAAT 
probe ATCCTACAGGCCGGTGGACAGCC 

Dbp fwd CGTGGAGGTGCTTAATGACCTTT NM_016974 
rev CATGGCCTGGAATGCTTGA 

probe AACCTGATCCCGCTGATCTCGCC 
Sgk1 fwd ACGGTGGACTGGTGGTGTCT NM_011361 

rev GCCGTGTTCCGGCTATAAAA 
probe TATGAGATGCTCTACGGCCTGCCCC 

GAPDH fwd CATGGCCTTCCGTGTTCCTA NM_008084 
rev CCTGCTTCACAACTTTCTTGA 

probe CCGCCTGGAGAAACCTGCCAAGTATG 
Tbp fwd TTGACCTAAAGACCATTGCACTTC NM_013684 

rev TTCTCATGATGACTGCAGCAAA 
probe TGCAAGAAATGCTGAATATAATCCCAAGCG 

Rps9 fwd GACCAGGAGCTAAAGTTGATTGGA NM_029767 
rev TCTTGGCCAGGGTAAACTTGA 

probe AAACCTCACGTTTGTTCCGGAGTCCATACT 
Eef1a fwd CCTGGCAAGCCCATGTGT NM_010106 

rev TCATGTCACGAACAGCAAAGC 
probe TGAGAGCTTCTCTGACTACCCTCCACTTGGT 

Fabp7 fwd TTTCTGCGCAACCTGGAAG NM_021272 
rev CACGTTTCCCACTTGCCTAG 

probe AAGCTCTGGGCGTGGGCTTTGC 
Clock fwd Mm00455950_m1 NM_007715.5 

rev TaqMan Expression Assay, Life Technologies 
probe 
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Figure S1. Number of brief awakenings during the 4 last hours of light period (ZT8-12). The 

mean (+ 1 SEM; expressed per hour of sleep) number of brief awakenings did not differ 

between genotypes (t-test, p = 0.44). The number of brief awakenings obtained at this time 

of day is used as a reference for the analysis presented in Figure 3C. 
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Figure S2: Spectral composition of EEG activity during wakefulness, NREM sleep, and REM 

sleep in baseline. A) Mean spectral profiles calculated over the two baseline days during 

wakefulness (upper, left), NREM sleep (upper, middle), and REM sleep (upper, right panel) 

together with their KO/WT spectral ratios (three lower panels). When averaged over the entire 

24h day the NREM sleep EEG spectra do not differ between genotypes. In waking and REM 

sleep EEG power density between 1.5 - 5.5 Hz, 11 - 20 Hz, and, for wakefulness, between 33 - 

42 Hz, was higher in KO mice (red horizontal lines at bottom; post-hoc t-test, P<0.05). The 

significant decrease in KO mice in the theta frequency range in wakefulness was not due to a 

lower theta activity but to a slowing of the dominant theta frequency. B) Theta peak 

frequency, but not theta peak power, was reduced in KO mice both in baseline (bsl, left panel; 

-0.9 Hz) and sleep deprivation (SDep, right panel; -0.5 Hz; red stars; t-test P<0.05; mean ± bi-

directional SEM). Note that vertical scales differ between the two panels. Theta peak

frequency during REM sleep was not affected by genotype (analysis not shown). C) Total EEG

power calculated in baseline, which served as an individual reference to calculate relative EEG

spectra, did not differ between genotypes. This reference was used for the analyses shown
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Figures S2A, S3, 4, and 5. The genotype differences in the relative EEG spectra depicted in 

panel A were similarly observed for the absolute EEG spectra although frequency ranges that 

significantly differed were smaller due to a larger inter-individual variation (data not shown). 

Figure S3. Spectral profiles of the waking EEG obtained in the last 4h of the baseline light 

periods. Upper panel: Mean spectral profiles of the baseline waking EEG between ZT8-12 used 

as reference for the analysis in Figure 4B (KO black, WT grey line). EEG power density was 

expressed as a percentage of individual total EEG power (see Methods and FigureS1C). Lower 

panel: Genotype differences (KO/WT) for the spectra in the upper panel were limited to the 

high delta frequencies (2.25 - 4.5 Hz; red squares; post-hoc t-tests, p < 0.05).  
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